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Abstract

Abstract: We propose a model for short-term rates driven by a self-exciting jump process
to reproduce the clustering of shocks on the Euro overnight index average (EONIA). The
key element of the model is the feedback e�ect between the absolute value of jumps and the
intensity of their arrival process. In this setting, we obtain a closed-form solution for the
characteristic function for interest rates and their integral. We introduce a class of equiva-
lent measures under which the features of the process are preserved. We infer the prices of
bonds and their dynamics under a risk-neutral measure. The question of derivatives pricing
is developed under a forward measure, and a numerical algorithm is proposed to evaluate
caplets and �oorlets. The model is �tted to EONIA rates from 2004 to 2014 using a peaks-
over-threshold procedure. From observation of swap curves over the same period, we �lter
the evolution of risk premiums for Brownian and jump components. Finally, we analyze the
sensitivity of implied caplet volatility to parameters de�ning the level of self-excitation.

Keywords. Hawkes process, self-exciting process, interest rates, yield curve.

1 Introduction

For most assets it has been observed that extreme events such as jumps in prices tend to occur in
clusters (Ait-Sahalia et al., 2014a). Our analysis of the Euro overnight index average (EONIA)
from 2004 to 2014 reveals that interbank interest rates exhibit similar behavior. However, the
majority of continuous time models for interest rates are driven by Markov (Brownian and other
Lévy) processes that cannot capture clustering e�ects because of the independence of their incre-
ments. The literature on these approaches is vast. The �rst interest rate models based on a single
mean-reverting Brownian process were introduced by Vasicek (1977), Cox et al. (1985), and Hull
and White (1990). Du�e and Kan (1996) and Dai and Singleton (2000) extended this framework
to several risk factors and introduced a�ne models. Brigo and Mercurio (2007) provide a more
complete survey. Interest rate models based on other Lévy processes are less popular, mainly
because no closed-form solutions for options pricing exist. This type of model was explored by
Eberlein and Kluge (2006), Filipovi¢ and Tappe (2008), and Hainaut and MacGilchrist (2010).

This paper contributes to the literature by proposing a di�erent approach designed around a
feedback mechanism to capture clustering e�ects in the evolution of interest rates. The feedback
element introduces a propagation mechanism from one positive or negative shock on rates to
the next, which is not present in common models. The main tools we use are Hawkes processes
(Hawkes, 1971a,b; Hawkes and Oakes, 1974). These are parsimonious self-exciting point pro-
cesses for which the intensity jumps in response to and reverts to a target level in the absence
of an event. As the future of a self-exciting process is in�uenced by the timing of past events,
Errais et al. (2010) used this to generate contagion between defaults in a top-down approach
to credit risk. Embrechts et al. (2011) applied multivariate Hawkes processes in their analysis
of stocks markets. Hawkes processes were also used by Ait-Sahalia et al. (2014a,b) to model
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two key aspects of asset prices: clustering in time and cross-sectional contamination between
regions. These processes are increasingly integrated in high-frequency �nance. Examples include
modeling of the duration between trades (Bauwens and Hautsch, 2009) and of the arrival pro-
cess for buy and sell orders (Bacry et al., 2013). Giot (2005), Chavez-Demoulin et al. (2005),
and Chavez-Demoulin and McGill (2012) tested these processes in a risk management context,
whereas Dassios and Jang (2012) proposed a bivariate process for applications in insurance.

This study complements the existing literature in several directions. It is one of the �rst studies
to use self-exciting processes to model the term structure of interest rates. The papers cited
above focus on stocks or CDS markets. In most econometric applications published, jumps are
unidirectional and constant to preserve the positivity of the intensity of the Poisson process.
Our EONIA study emphasizes that these assumptions are not relevant for interbank interest
rate markets. In these markets, jumps have a variable amplitude and are caused by successive
adjustments, whether positive or negative, of rates for deposit and marginal lending facilities
o�ered by central banks. To include this feature in our model, the intensity of shocks is not
linked to the aggregate value of all past jumps, but to the sum of their absolute values. This
approach may be viewed as a parsimonious alternative to the bivariate Hawkes processes used
by Embrechts et al. (2011). In addition, our work provides all the tools for pricing bonds and
reconciling the dynamics of the short-term rate under a real measure, with the term structure
of bonds yields evaluated under a risk-neutral measure. In particular, we propose a family of
changes of measures (risk-neutral and forward) that preserves the dynamics of the process un-
der real and risk-neutral measures. Finally, after describing the dynamics of bonds quotes, we
present the moment-generating function of yields under a forward measure and use this in nu-
merical applications for the pricing of derivatives.

To justify the presence of a self-exciting component in the dynamics of short-term rates, we
�t our model to an EONIA time series over a period of ten years. This index is a weighted
average of all overnight unsecured lending transactions (in euros) between prime banks. As the
sample paths for jumps and their intensities are not observable, calibration cannot be performed
via direct log likelihood maximization. To solve this inference problem, Ait-Sahalia et al. (2014a)
applied the generalized method of moments (GMM) to stock returns. Ait-Sahalia et al. (2014b)
used an alternative method based on matching modeled and market prices. Instead, we opt for
a peak-over-threshold procedure, as used by Embrechts et al. (2011). This method allows us
to �lter jumps and the intensity of their arrival process. Parameters are next inferred via three
independent log likelihood maximization procedures. To explain the evolution of swap curves
over the same period, we adjust daily risk premiums by matching modeled and market swap
rates. Finally, we analyze the sensitivity of caplet implied volatility to parameters de�ning the
level of self-excitation.

2 Interest rate model

Hawkes processes belong to the family of point processes and are used in seismology to model
the frequency of earthquakes and clustering of aftershocks. The intensity of the arrival of events
directly depends on the history of the process and increases after the occurrence of a jump. This
propagation mechanism has been adapted in �nance research to capture clustering e�ects. Except
for work by Salmon and Tham (2007), very few papers have investigated this phenomenon in
interest rate markets. Nevertheless, similar trends are observed for EONIA rates, as emphasized
by Figure 2, which shows rate jumps from 1/1/2004 to 31/12/2014 after �ltering via a procedure
described in detail later. Most of these jumps are caused by successive adjustments of rates for
deposit and marginal lending facilities o�ered by central banks. The clustering of the adjustments
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is explained by the emergency of such decisions in periods of economic crisis. This observation
is at the heart of our study. We propose an interest rate model that duplicates the clustering of
shocks and explains the term structure of bond yields. To achieve this goal, the dynamics of the
short-term rate is driven by the sum of a mean-reverting function, a Brownian process, and a
Hawkes process. This short-term interest rate is denoted by rt and is assumed to be de�ned by
the stochastic di�erential equation (SDE)

drt = a(θ(t)− rt)dt+ σdWt + d

(
Nt∑
i=1

Ji

)

on a complete probability space (Ω,F , P ) with right-continuous information �lter F = (Ft)t>0,
where P denotes the real probability measure. θ(t) > 0 is the mean level to which interest rates
tend to revert and a is the speed of mean reversion. Wt is Brownian motion and σ is Brownian
volatility. Nt is a Poisson process with intensity λt, and Ji are i.i.d. random jumps with density
ν(z) on R. Most of results developed in the next sections are independent of the distribution
chosen for jumps. However, we choose to work with double-exponential jumps in numerical
applications. The density in this case is de�ned by the three parameters ρ+ ∈ R+, ρ− ∈ R− and
p ∈ (0, 1) according to

ν(z) = pρ+e−ρ
+z1{z≥0} − (1− p)ρ−e−ρ−z1{z<0}, (1)

and the cumulative distribution function is given by

P (Ji ≤ z) =

{
(1− p)e−ρ−z z ≤ 0

(1− p) + p
(

1− e−ρ+z
)

z > 0
. (2)

In this distribution, p and (1 − p) are the probability of observing upward and downward ex-
ponential jumps, respectively, and the expectation of J is equal to a weighted sum of expected
average jumps:

E(Ji) = p
1

ρ+
+ (1− p) 1

ρ−
. (3)

In following developments, we need the moment-generating function for the sum of J and of its
absolute value, given by

ψ (z1, z2) := E
(
ez1Ji+z2|Ji|

)
:= p

ρ+

ρ+ − (z1 + z2)
+ (1− p) ρ−

ρ− − (z1 − z2)

if (z1 + z2) < ρ+ and (z1 − z2) > ρ−. The proof is provided in Appendix A. The dynamics
chosen for rt allows negative interest rates but we do not consider this as a limitation. Indeed,
since the European sovereign debt crisis in 2012, we have observed several periods during which
short-term rates (sovereign or interbank) were negative (e.g. in 2014, the EONIA was negative
61 times during 254 days of trading). Propagation is modeled by assuming that the jump arrival
frequency λt depends on the sum of absolute values for jumps up to time t, denoted by Lt:

Lt =

Nt∑
i=1

|Ji|dNt. (4)

The frequency λt is driven by

dλt = κ(c− λt)dt+ δdLt, (5)

3



where δ, κ, and c are positive and constant. By construction, the feedback process for jump
frequency is strictly positive and ensures the positivity of λt. As mentioned in the Introduction,
jumps are unidirectional (exclusively positive or negative) in most previous studies. In our
approach, jumps can be either positive or negative, but any jump occurrence increases the
intensity of Nt. Even if this feature seems anecdotal, it introduces some additional di�culty,
particularly in guessing the dynamics of jumps under a risk-neutral or forward measure. This
point is further discussed later. However, we can �rst check via direct di�erentiation that the
solution of Eq. (5) is given by

λt = c+ e−κt (λ0 − c) + δ

ˆ t

0
e−κ(t−s)dLs. (6)

The expectation for λt is provided by the next proposition. This result was demonstrated by
Errais et al. (2010) but an alternative proof is presented here.

Proposition 2.1. The expected value of λt is equal to

E (λt | F0) =

(
κc

δE(|Ji|)− κ
+ λ0

)
e(δE(|Ji|)−κ)t − κc

δE(|Ji|)− κ
. (7)

Proof. As jumps are independent of the intensity, we infer from Eq. (6) that

E (λt|F0) = c+ e−κt (λ0 − c) + δ

ˆ t

0
e−κ(t−s)E (dLs|F0)

= c+ e−κt (λ0 − c) + δ

ˆ t

0
e−κ(t−s)E(|Ji|)E (λs−|F0) ds.

If we take the derivative of the last expression with respect to time, we �nd that E (λt|F0) is the
solution of the ordinary di�erential equation (ODE)

∂

∂t
E (λt|F0) = −κe−κt (λ0 − c) + δE(|Ji|)E (λt|F0)− κδ

ˆ t

0
e−κ(t−s)E(|Ji|)E (λs−|F0) ds

= (δE(|Ji|)− κ)E (λt|F0) + κc, (8)

which admits Eq. (7) as a solution.

From Eq. (7), we deduce the following parameter condition de�ning the dynamics of λt

δE(|Ji|) < κ (9)

to ensure the asymptotic stability of the process (limt→∞ E (λt|F0) < ∞). If this condition
is ful�lled, the intensity converges asymptotically towards κc

κ−δE(|Ji|) . When jumps are double-

exponential random variables, the expectation for their absolute value is E(|Ji|) = p 1
ρ+

+ (1 −
p) 1
|ρ−| and inequality (9) is easy to check.

Having de�ned the dynamics of the short-term rate, we now present its in�nitesimal gener-
ator. If It = (Nt, Lt), the process (rt, λt, It) is a Markov process in the state space D =
(R× R+ × N× R+) and its in�nitesimal generator for any function g(t, rt, λt, It) : R+×D → R
with partial derivatives gt, gλ, gr, and grr is de�ned by

Ag(t, rt, λt, It) = gt + a(θ − rt) gr +
1

2
σ2 grr + κ(c− λt) gλ (10)

+λt

ˆ −∞
−∞

g
(
t, rt + z, λt + δ|z|, It + (1, |z|)>

)
− g(t, rt, λt, It)ν(dz).
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Under mild conditions, the expectation for g(.) is equal to the integral of the expected in�nites-
imal generator:

E (g(T, rT , λT , IT )|Ft) = g(t, rt, λt, It) + E
(ˆ T

t
Ag(s, rs, λs, Is)ds|Ft

)
(11)

= g(t, rt, λt, It) +

ˆ T

t
E (Ag(s, rs, λs, Is)|Ft) ds.

The derivative of this expectation with respect to time is equal to its expected in�nitesimal
generator:

∂

∂T
E (g(T, rT , λT , IT )|Ft) = E (Ag(T, rT , λT , IT )|Ft) . (12)

The next proposition shows that the moment-generating function for (rT , λT , −
´ T
t rsds) is an

a�ne function of the short-term rate and of the intensity. This result is used later to price bonds
under a risk-neutral measure.

Proposition 2.2. If we note that ψ(z1, z2) := E
(
ez1Ji+z2|Ji|

)
, the moment-generating function

for (rT , λT , −
´ T
t rsds) is an a�ne function of rt and λt:

E
(
ew0rT+w1λT−w2

´ T
t rsds|Ft

)
= exp (A(t, T ) +B(t, T )rt + C(t, T )λt) , (13)

where A(t, T ), B(t, T ), and C(t, T ) are solutions of the ODE system
∂
∂tA(t, T ) = −aθ(t)B − κcC − 1

2σ
2B2

∂
∂tB(t, T ) = aB + w2

∂
∂tC(t, T ) = κC − [ψ (B ,C δ)− 1]

(14)

and satisfy the terminal conditions A(T, T ) = 0, B(T, T ) = w0, and C(T, T ) = w1.

Proof. We de�ne Yt := E
(
ew0rT+w1λT−w2

´ T
t rsds|Ft

)
. As Ft ⊂ Fu for any u ≥ t, applying the

rule of conditional expectations leads to

Yt = E
(
e−w2

´ u
t rsdsE

(
ew0rT+w1λT−w2

´ T
u rsds | Fu

)
| Ft
)

= E
(
ew0rT+w1λT−w2

´ u
t rsdsYu | Ft

)
.

Then, assuming enough regularity to allow us to take the limit within the expectation, the
following limit converges to zero:

lim
u→t

E
(
e−w2

´ u
t rsdsYu | Ft

)
− Yt

u− t
= 0. (15)

If we develop the exponential as its Taylor approximation of �rst order, the limit is rewritten as

lim
u→t

E (Yu | Ft)− Yt
u− t

= w2rtYt (16)

in which the left-hand term is the in�nitesimal generator of the moment-generating function.
To simplify future calculations, we let f(t, rt,, λt, It) := Yt and denote ft, fλ, and fr,frr as the
partial derivatives of f with respect to time, intensity and interest rate. Then Eq. (16) is equal
to Af = w2rtf , and after development to

w2rtf = ft + a(θ(t)− rt) fr + κ(c− λt) fλ +
1

2
σ2 frr

+λt

ˆ +∞

−∞
f
(
t, rt + z, λt + δ|z|, It + (1, |z|)>

)
− f ν(dz), (17)
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and f satis�es the terminal condition

f(T, rT , λT , IT ) = exp (w0rT + w1λT ) . (18)

In the remainder of this proof, we assume that f is an exponential a�ne function of rt and λt:

f = exp (A(t, T ) +B(t, T )rt + C(t, T )λt) ,

where A(t, T ), B(t, T ), and C(t, T ) are functions of time. Under this assumption, the partial
derivatives of f are given by

ft =

(
∂

∂t
A+ rt

∂

∂t
B + λt

∂

∂t
C

)
f,

fr = Bf frr = B2f fλ = Cf,

and the integrand in Eq. (17) can be rewritten as

f
(
t, rt + z, λt + δ|z|, It + (1, |z|)>

)
− f = f [exp (Bz + Cδ|z|)− 1] .

Developing Eq. (17) leads to the relation

0 =
∂

∂t
A+ aθB + κcC +

1

2
σ2B2 + rt

(
∂

∂t
B − aB − w2

)
+λt

(
∂

∂t
C − κC + [ψ (B , Cδ)− 1]

)
.

As rt and λt are random variables, this last relation holds only if their multiplicative coe�cients
are null. This is achieved if A(t, T ), B(t, T ), and C(t, T ) satisfy system (14).

In fact, it is easy to check that B(t, T ) admits the following closed-form expression:

B(t, T ) =
1

a

(
−w2 + (w2 + aw0) e−a(T−t)

)
.

In numerical applications, the functions A(t, T ) and C(t, T ) are computed using the Euler
method. Note that it is also possible to numerically retrieve the probability density function
(pdf) for rt by numerically inverting its moment-generating function using a fast Fourier al-
gorithm. However, we see later that model calibration against historical time series via log
likelihood is not necessary. Instead, we use a peak-over-threshold procedure to detect jumps and
�t the jump and Brownian processes separately. This procedure is described in Section 4.

3 Equivalent exponential a�ne measures and bond pricing

A fundamental step in identifying at least one class of equivalent measures of probability is
de�nition of a risk-neutral measure. This step is required for subsequent reconciliation of the
econometric calibration results obtained under a historical measure with the term structure for
bond yields evaluated in a risk-neutral world. This also allows us to measure the risk premiums
related to the Brownian and jump components embedded in the dynamics of rt. However, as there
is no contingent claim written for λt, the market is incomplete and there are an in�nite number
of eligible equivalent risk-neutral measures. There is also no guarantee that the dynamics of rt is
similar in the real and risk-neutral worlds. For this reason, we focus on a family of exponential
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a�ne changes of measure and �nd the conditions under which the interest rate dynamics is
preserved. These equivalent measures are induced by exponential martingales of the form

Mt(γ, ξ) := exp

(
g(γ)λt + γLt − ϕ(γ)t− 1

2

ˆ t

0
ξ2ds−

ˆ t

0
ξdWs

)
, (19)

where ξ de�nes the market price for interest risk. Zhang et al. (2009) used a similar change
of measure to simulate rare events of a one-dimension Hawkes process without a Brownian
component and with only constant jumps. In our framework, jumps are random and the a�ne
change of measure modi�es both the frequency and distribution of jumps. Before detailing this
point, the next proposition introduces the conditions that γ must ful�ll to guarantee that Mt(γ)
is a local martingale.

Proposition 3.1. If for γ there exists a suitable solution g(γ) for the equation

gκ− (ψ(0 , γ + gδ)− 1) = 0, (20)

where ψ(0 , z) = E(ez |Ji|), and if ϕ(γ) is de�ned by

ϕ(γ) = g(γ)κc, (21)

then Mt(γ) is a local martingale.

Proof. We denote by Yt the exponent of Mt de�ned by Eq. (19):

Yt = g(γ)λt + γLt − ϕ(γ)t− 1

2

ˆ t

0
ξ2ds−

ˆ t

0
ξdWs. (22)

According to Eq. (5), the in�nitesimal dynamics is given by

dYt = gκ(c− λt)dt+ (gδ + γ) dLt − ϕ(γ)dt− 1

2
ξ2dt− ξdWt.

In the remainder of this proof, the random measure of Ji is denoted by χ(.) and is such that
Ji =

´∞
−∞ χ(dz). Applying the Itô lemma for semi-martingales to Mt leads to the relation

dMt = MtdYt +
1

2
Mtd [Yt, Yt]

c
t

+Mt

ˆ ∞
−∞

(
e(gδ+γ)|z| − 1− (gδ + γ) |z|

)
χ(dz)dNt

and this equation can be developed as follows:

dMt = Mt (gκc− ϕ) dt−MtξdWt −
1

2
ξ2Mt

+
1

2
ξ2Mt −Mtλt

(
gκ−

ˆ ∞
−∞

(
e(gδ+γ)|z| − 1

)
ν(dz)

)
dt

+Mt

ˆ ∞
−∞

(
e(gδ+γ)|z| − 1

)
[χ(dz)dNt − λtν(dz)dt] .

Since the integral with respect to χ(dz)dNt − λν(dz)dt is a local martingale, Mt is also a local
martingale if and only if the following relations hold:{

gκc− ϕ = 0

gκ−
´∞
−∞

(
e(gδ+γ)|z| − 1

)
ν(dz) = 0.
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Assuming the existence of suitable solutions for Eqs. (20) and (21), an equivalent measure
Qγ,ξ is de�ned by the Radon-Nykodym derivative

dQγ,ξ

dP

∣∣∣∣
Ft

=
Mt(γ, ξ)

M0(γ, ξ)
(23)

and may be used as a risk-neutral measure. In this case, the dynamics of the short-term rate
and of the intensity is modi�ed but is still a combination of a mean-reverting Brownian process
and a Hawkes process, as proved in the next proposition.

Proposition 3.2. Under the equivalent measure Qγ,ξ, the short-term rate is still a mean-
reverting jump di�usion model driven by the dynamics

drt = a(θQ(t)− rt)dt+ σdWQ
t + d

NQ
t∑

i=1

JQi

 ,

where the long-term trend to which interest rates revert is modi�ed as follows:

θQ(t) = θ(t)− ξσ

a
.

Furthermore, NQ
t is a counting process with intensity λQt = ψ (0 , δg + γ)λt driven by the dy-

namics

dλQt = κ(cQ − λQt )dt+ δQdLQt ,

where
cQ = ψ(0 , δg + γ)c δQ = ψ(0 , δg + γ)δ.

JQ denotes a random variable with the following characteristic function:

ψQ(z1, z2) := EQ
(
ez1J

Q
i +z2|JQi |

)
=
ψ (z1 , z2 + (δg + γ))

ψ(0 , δg + γ)
, (24)

and LQt is de�ned by the sum of jumps under Q:

LQt =

NQ
t∑

i=1

|JQi |. (25)

Proof. If Yt is the exponent of Mt, as de�ned by Eq. (22), the characteristic function for rT
under the risk-neutral measure is given by

EQ (ewrT |Ft) = e−YtE
(
eYT+wrT |Ft

)
.

If f(t, rt, Yt, λt, It) denotes E
(
eYT+wrT |Ft

)
, according to the Itô lemma, it solves the equation

0 = ft + a(θ − rt) fr +
1

2
σ2 frr + κ(c− λt)fλ − ξσfyr

+

(
gκ(c− λt)− ϕ(γ)− 1

2
ξ2

)
fy +

1

2
ξ2fyy (26)

+λt

ˆ +∞

−∞
f
(
t, rt + z, yt + (gδ + γ) |z|, λ+ δ|z|, It + (1, |z|)>

)
− f dν(z) ,

where ft, fy, fyy , and fr, frr are the partial derivatives of f(.) with respect to time and other
state variables. As in the proof of Proposition 2.2, we assume that f(.) is an exponential a�ne
function of risk factors:

f = exp (A(t, T ) +B(t, T )rt + C(t, T )ψ (0 , δg + γ)λt +D(t, T )Yt) .
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Under this assumption, the partial derivatives of f are

ft =

(
∂

∂t
A+ rt

∂

∂t
B + λtψ (0 , δg + γ)

∂

∂t
C + Yt

∂

∂t
D

)
f

fr = Bf frr = B2f fλ = Cψ (0 , δg + γ) f

fy = Df fyy = D2f fyr = BDf

and the integrand in Eq. (26) is rewritten as

f
(
t, rt + z, yt + (gδ + γ) |z| , λ+ δ|z|, It + (1, |z|)>

)
= f exp (Bz + (Cψ (0 , δg + γ) δ +D (δg + γ)) |z|) .

Inserting these expressions in Eq. (26) and canceling terms multiplying the state variables yields
the ODE system

0 =
∂

∂t
A+ aθB +

1

2
σ2B2 + κ cC ψ (0 , δg + γ)

+

(
gκc− ϕ(γ)− 1

2
ξ2(1−D)− ξσB

)
D

0 =
∂

∂t
B − aB

0 = ψ (0 , δg + γ)
∂

∂t
C − κCψ (0 , δg + γ)− gκD (27)

+ [ψ (B , Cψ (0 , δg + γ) δ +D (δg + γ))− 1]

0 =
∂

∂t
D

with the terminal conditions A(T, T, w) = 0, B(T, T, w) = w, C(T, T, w) = 0, and D(T, T, w) =
1. From the last relation, we infer that D = 1. As ϕ(γ) = g(γ)κc and gκ = (ψ(0 , gδ + γ)− 1),
this last ODE system is �nally rewritten as

0 =
∂

∂t
A+ aθQB +

1

2
σ2B2 + κcQC

0 =
∂

∂t
B − aB

0 =
∂

∂t
C − κC +

[
ψ
(
B , C δQ + (δg + γ)

)
ψ (0 , δg + γ)

− 1

]
. (28)

This completes the proof.

The next proposition shows that the jump distribution is preserved under Q.

Proposition 3.3. Under Q, jumps, JQi are double-exponential random variables with density

νQ(z) = pQρ+Qe−ρ
+Qz1{z≥0} − (1− pQ)ρ−Qe−ρ

−Qz1{z<0}, (29)

where the parameters are adjusted as follows:

ρ+Q = ρ+ − (δg + γ) ,

ρ−Q = ρ− + (δg + γ) ,

pQ =
pρ+ρ−Q

(pρ+ρ−Q + (1− p)ρ−ρ+Q)
.
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Proof. By construction, the moment-generating function for jumps under the risk-neutral mea-
sure is the ratio

ψQ (z1, 0) =
ψ (z1 , 0 + (δg + γ))

ψ(0 , δg + γ)
.

If we denote α = (δg + γ), the numerator and denominator in this equation are given by

ψ (z1, α) =
pρ+ (ρ− + α− z1) + (1− p)ρ− (ρ+ − α− z1)

(ρ+ − α− z1) (ρ− + α− z1)

ψ (0, α) =
pρ+ (ρ− + α) + (1− p)ρ− (ρ+ − α)

(ρ+ − α) (ρ− + α)
.

Then, since

ψQ (z1, 0) =

pρ+ρ−Q

(pρ+ρ−Q+(1−p)ρ−ρ+Q)

(
ρ−Q − z1

)
ρ+Q + (1−p)ρ−ρ+Q

(pρ+ρ−Q+(1−p)ρ−ρ+Q)
ρ−Q

(
ρ+Q − z1

)
(ρ+Q − z1) (ρ−Q − z1)

,

the proof is complete.

The remainder of this section develops useful corollaries for the pricing of bonds. If market
participants adopt an equivalent exponential a�ne measure for the risk-neutral measure, the price
of a zero-coupon bond is equal to the expected discount factor under this measure. Hereafter,
the price a bond at time t and expiring at T is denoted by

P (t, T, rt, λ
Q
t , I

Q
t ) = EQ

(
e−
´ T
t rsds | Ft

)
. (30)

From Proposition 2.2, it is easy to check that this price is also an a�ne function of short-term
rates and intensities because the dynamics of rt under the real and risk-neutral measures is
similar.

Corollary 3.4.

EQ
(
e−
´ T
t rsds | Ft

)
= exp

(
AP (t, T ) +BP (t, T )rt + CP (t, T )λQt

)
, (31)

where AP (t, T ) and CP (t, T ) are solutions of the ODE system

∂

∂t
AP (t, T ) = −aθQBP − 1

2
σ2BP 2 − κcQCP

∂

∂t
CP (t, T ) = κCP −

[
ψQ
(
BP , CP δQ

)
− 1
]

(32)

with the terminal conditions AP (T, T ) = 0, CP (T, T ) = 0, and

BP (t, T ) =
1

a

(
e−a(T−t) − 1

)
.

Functions AP , BP , and CP are also needed in the next section to de�ne a forward risk-neutral
measure. The dynamics of bond prices depends on the random measure of the jump process,
denoted LQ(dt, dz). This random measure is such that

LQt =

ˆ ∞
0

ˆ ∞
−∞

LQ(dt, dz)

and its expectation is EQ(LQ(dt, dz)|Ft) = λQt ν
Q(z) dz dt. The next corollary presents the

in�nitesimal dynamics of bond prices.

10



Corollary 3.5. Bond prices P (t, T, rt, λ
Q
t , I

Q
t ) are ruled by the SDE

dP = P rt dt+BP (t, T )P σdWQ
t (33)

+P

ˆ +∞

−∞
exp

((
BP (t, T ) , CP (t, T )δQ

)
z
)
− 1 LQ(dt, dz)

−P λQt
[
ψQ
(
BP (t, T ) , CP (t, T )δQ

)
− 1
]
dt,

where LQ(dt, dz) is the random measure of the jump process.

Proof. According to the Itô lemma for semi-martingales, P (t, T, rt,λ
Q
t , I

Q
t ) is such that

dP = Pt + κ(cQ − λQt )Pλdt+ a(θQ − rt)Prdt (34)

+
1

2
σ2 Prrdt+ PrσdW

Q
t

+

ˆ +∞

−∞
P (t, T, rt + z, λQt + δQ|z|, IQt + (|z|, 1)>)− P LQ(dt, dz),

where partial derivatives are obtained from Eqs. (31) and (32).

From the last corollary, we infer that the instantaneous growth rate for the bond price is well
equal to the short-term rate, E

(
dP
P |Ft

)
= rtdt, as the sum of all other terms in Eq. (33) is a

martingale.

Note that the function θQ(t) �tting an observed yield curve is approached in practice by a
staircase function matching modeled and observed bond prices, denoted P obs(0, ti) in this para-
graph, for a given set of maturities (t1, t2, . . . tn). Construction of θQ(t) requires calculation
of BP (0, ti) and CP (0, ti) (as de�ned in Corollary 3.4) for all maturities considered. Next, the
values of AP,obs(0, ti) �tting observed prices are obtained using the relation

AP,obs(0, ti) = log
(
P obs(0, ti)

)
−BP (0, ti)r0 − CP (0, ti)λ

Q
0 ti ∈ (t1, t2, . . . tn) .

According to Eq. (32), θQ(s) is a function satisfying the following relations for all maturities:

AP,obs(0, ti)−AP,obs(0, ti−1) =

−a
ˆ ti

ti−1

θQ(s)BP (s, ti)ds−
1

2
σ2

ˆ ti

ti−1

BP (s, ti)
2ds− κcQ

ˆ ti

ti−1
CP (s, ti)ds,

assuming that θQ(s)=θQ(i) is constant over the interval [ti−1ti), which leads to the following
staircase approximation:

θQ(i) ≈ − 1

a∆i

AP,obs(0, ti)−AP,obs(0, ti−1)

(BP (s, ti)−BP (s, ti−1))
− 1

2

σ2

a

(
BP (s, ti) +BP (s, ti−1)

)
−κ
a
cQ
(
CP (s, ti)− CP (s, ti−1)

)
(BP (s, ti)−BP (s, ti−1))

.

If the model is used for options pricing, the current yield curve has to be accurately reproduced
to avoid model arbitrage. If the model is used to conduct an econometric analysis, it is better
to set θ(t) to a constant value, as the purpose is to explain the dynamics of the term structure
rather than to perfectly �t it.
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Pricing of options

This section illustrates how our model can be used for the pricing of interest rate derivatives
under a forward measure. The yield for maturity T − S at time T is denoted by Y (T, S) and is
de�ned as

Y (T, S) := − 1

S − T
logP (T, S)

= −A
P (T, S)

S − T
− BP (T, S)

S − T
rT −

CP (T, S)

S − T
λQT .

The payo� paid at time S ≥ T by an European option written on Y (T, S) is denoted by
V (Y (T, S)). Examples of such instruments are caplets (V (Y (T, S)) = N(S − T )[Y (T, S) −
k]+), �oorlets (V (Y (T, S)) = N(S − T )N [k − Y (T, S)]+, and options for zero-coupon bonds
(V (Y (T, S)) = N [exp (−Y (T, S)(S − T )) − k]+), where N is the principal and k is the strike.
The option price is the expectation for this discounted payo� under the risk-neutral measure:

f(t, rt, λt) = EQ
(
e−
´ S
t rsdsV (Y (T, S)) | Ft

)
. (35)

As recommended by Brigo and Mercurio (2007), it is better to evaluate the last expression under
the S−forward measure. This avoids numerical inaccuracies related to the approximation of

exp
(
−
´ S
t rsds

)
because the discount factor is drawn from Eq. (35) under the forward measure.

If the market admits at least one risk-neutral measure Q, an equivalent probability measure to Q
is de�ned using the change in numeraire technique. The S-forward measure has as numeraire the
zero-coupon bond of maturity S. Under this measure, the price of any �nancial assets, divided
by the numeraire P (t, S), is a martingale and the price of the derivative is

EQ
(
e−
´ S
t rsdsV (Y (T, S)) | Ft

)
= P (t, S)ES (V (Y (T, S)) | Ft)

= P (t, S)

ˆ +∞

0
V (y)fY (T,S)(y)dy,

where fY (T,S)(y) is the density of Y (T, S) under the forward measure. If the market value of a

cash account is Bt = e
´ t
0 rsds, the Radon�Nykodym derivative de�ning the S-forward measure is

dFS

dQ
=

1

BS

B0

P (0, S)
=
(
e
´ S
0 rsdsEQ

(
e−
´ S
0 rsds|F0

))−1
.

To calculate the expected payo� under FS , the easiest approach is to approximate the pdf for
Y (T, S) using a discrete Fourier transform (DFT). To perform such a calculation, the Laplace
function for the yield is needed.

Corollary 3.6. The Laplace transform of Y (T, S) at time t ≤ T under the forward measure FS,
denoted by ϕt,S(.), is given by

ϕt,S(w, rt, λt) = ES
(
ewY (T,S) | Ft

)
=

exp
(
AF (t, T )−AP (t, S) +

(
BF (t, T )−BP (t, S)

)
rt +

(
CF (t, T )−BP (t, S)

)
λQt

)
,

where AP (t, S), BP (t, S), AP (t, S) are de�ned in the corollary 3.4 for a zero coupon bond of
maturity S. And where AF (t, T ), BF (t, T ) and CF (t, T ) are solutions of a system of ODEs:

∂
∂tA

F (t, T ) = −aθQ(t)BF − κcQCF − 1
2σ

2BF 2

∂
∂tB

F (t, T ) = aBF + 1
∂
∂tC

F (t, T ) = κCF −
[
ψQ
(
BF , CF δQ

)
− 1
] (36)
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and satisfy the terminal conditions:

AF (T, T ) =

(
1− w

S − T

)
AP (T, S) ,

BF (T, T ) =

(
1− w

S − T

)
BP (T, S) ,

CF (T, T ) =

(
1− w

S − T

)
CP (T, S) .

Proof. By de�nition of the forward measure and using the fact that Ft ⊂ FT , the Laplace
transform of Y (T, S) is given by

ES
(
ewY (T,S) | Ft

)
=

EQ
((

e
´ S
0 rsdsEQ

(
e−
´ S
0 rsds|F0

))−1
ewY (T,S) | Ft

)
e−
´ t
0 rsdsEQ

(
e−
´ S
t rsds |Ft

)(
EQ
(
e−
´ S
0 rsds|F0

))−1

=
EQ
(
e−
´ T
t rsdsEQ

(
e−
´ S
T rsds+wY (T,S) | FT

)
| Ft
)

EQ
(
e−
´ S
t rsds |Ft

) .

The FT conditional expectation in this equation is

EQ
(
e−
´ S
T rsds+wY (T,S) | FT

)
= ewY (T,S)EQ

(
e−
´ S
T rsds | FT

)
.

According to Corollary 3.4, the two terms in this product are such that

EQ
(
e−
´ S
T rsds+wY (T,S) | FT

)
= exp

((
1− w

S − T

)(
AP (T, S) +BP (T, S)rT + CP (T, S)λQT

))
.

Applying Proposition (2.2) allows us to complete the proof.

The next result introduces the discretization framework to build the density of Y (T, S),
under the forward measure. Note that it is possible to use the same algorithm to approach the
distribution of rt under the real and risk-neutral measures.

Proposition 3.7. Let M be the number of steps used in the DFT and let ∆y = 2ymax
M−1 be the

discretization step. We denote ∆z = 2π
M ∆y

and

zj = (j − 1)∆z

for j = 1 . . .M . The values of fY (T,S)(.) at points yk = −M
2 ∆y + (k − 1)∆y are approached by

the sum

fY (T,S)(yk) ≈
2

M ∆y
Re

 M∑
j=1

δjϕ
t,S (i zj , rt, λt) (−1)j−1e−i

2π
M

(j−1)(k−1)

 , (37)

where δj = 1
21{j=1} + 1{j 6=1}.

Proof. The density of Y (T, S) is retrieved by calculating the Fourier transform of ϕt,T (iz) as

fY (T,S)(yk) =
1

2π
F [ϕt,S(iz, rt, λt)](y)

=
1

2π

ˆ +∞

−∞
ϕt,S(iz, rt, λt) e

−i yk zdz

=
1

π
Re(

ˆ +∞

0
ϕt,S(iz, rt, λt)e

−i yk zdz),
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where the last equality comes from the fact that ϕt,S(z, rt, λt) and ϕ
t,T (−z, rt, λt) are complex

conjugate. At points yk = −M
2 ∆y +(k−1)∆y, the last integral is approached with the trapezoid

rule

ˆ b

a
h(z)dz =

h(a) + h(b)

2
∆z +

M−1∑
k=1

h(a+ k∆z)∆z

and leads to the following estimate for fY (T,S)(yk):

fY (T,S)(yk) ≈
1

π
Re

 M∑
j=1

δjϕ
t,S(izj , rt, λt)e

−i ykzj∆z


≈ 1

π
Re

 M∑
j=1

δjϕ
t,S(izj , rt, λt)(−1)j−1e−i

2π
M

(j−1)(k−1)∆z

 .

Once the density of Y (T, S) is obtained using the DFT, the option price is approached by a
weighted sum of payo�s:

EQ
(
e−
´ T
t rsdsV (Y (T, S)) | Ft

)
= P (t, T )

M+1∑
k=1

V (yk)fY (T,S)(yk)∆y .

The feasibility of this method is illustrated for caplets in the next section.

4 Econometric calibration and numerical applications

Fitting the model to a real time series would allow us to demonstrate the need to include a
self-exciting jump process in short-term rate models. However, the calibration is not direct be-
cause jumps and their arrival intensity cannot be directly observed. Furthermore, the density of
interest rates does not admit any closed-form solution. It is thus not possible to infer parame-
ters via direct log likelihood maximization. However, several alternatives exist. Ait-Sahalia et
al. (2014a) used a GMM approach to measure contagion in stocks markets. Ait-Sahalia et al.
(2014b) used an alternative method based on matching modeled and market prices for 5-year
CDS quotes. Chen and Poon (2013) combined moments and price matching for variance swaps.
At high frequency, jumps can be detected and �tted separately using the asymptotic properties
of Brownian motion, as illustrated by Mancini (2009). Still at high frequency, Barndor�-Nielsen
and Shephard (2004, 2006) de�ned and used bipower and multipower variation processes to es-
timate jumps.

As we work at low frequency (daily data observed over ten years), we instead opt for a peak-
over-threshold procedure similar to the one proposed by Embrechts et al. (2011). This method
is simple and robust. Consider a discrete record {rt0 , rt1 , . . . , rtn} of n + 1 observations of rt,
equally spaced at tj = jh for a given lag h. The variations in interest rates are denoted by
∆ri = rti − rti−1 . The unobservable number of jumps observed in these intervals is denoted by
∆iN = Nti −Nti−1 . The threshold g(α) is a deterministic function of the lag between the obser-
vations and a threshold parameter α ∈]0, 1] (the method for determining α is explained later).
It is assumed that when the drift-adjusted ∆ri is greater than g(α), it is likely that some jumps
occurred. To determine g(α) and the drift of ∆ri, we �rst use log likelihood maximization to �t a
mean-reverting process without jumps, also called a Vasicek model: ∆ri ∼ ag(θg−rti−1)h+σgWh.
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The Vasicek model also serves as a benchmark for evaluating our model. g(α) is de�ned as the
α-percentile of σgWh: g(α) = σg

√
hΦ−1(α). Under the assumption that when a jump occurs

the Brownian part is nonsigni�cant compared to the jump, the dynamics of the short-term rate
is approached by{

∆ri ∼ ag(θg − rti−1)h+ σgWh , ∆iN = 0
∣∣∆ri − ag(θg − rti−1)h

∣∣ ≤ g(α)

∆ri ∼ ag(θg − rti−1)h+ J , ∆iN = 1
∣∣∆ri − ag(θg − rti−1)h

∣∣ > g(α)
.

Once the jumps are �ltered, the Brownian process, the jump distribution, and the intensity
process are �tted separately via log likelihood maximization. If we still assume that the mean
reversion level θ(t) is constant, the following three optimization problems are solved numerically
to �nd an estimate of the parameters:

(a, θ, σ) = arg max
∑n

i=1 log Normal Pdf
(

∆ri , a(θ − rti−1)h , σ
√
h
)

1{no jumpat ti}

(ρ+, ρ−, p) = arg max
∑Ntn

i=1 log DoubleExpoPdf (Ji, ρ
+, ρ−, p)

(κ, c, δ, λ0) = arg max
∑n

i=1 log PoissonPdf (∆iN , λih) ,

where the jump arrival intensity is discretized as :λi = λi−1 + κ(c− λi−1)h+ δ J 1{jumpat ti} for
i = 1 to n. Because jumps smaller (in absolute value) than the threshold g(α) are censored, we
have a more accurate �t if we replace the double-exponential pdf by its censored pdf, as described
in Appendix B.

This procedure was applied to EONIA time series data from 1 January 2004 to 31 Decem-
ber 2014. The index is a weighted average of all overnight unsecured lending transactions (in
euros) between prime banks, and is representative of short-term rates. Its evolution is plotted
in Figure 3. From January 2004 to December 2005, EONIA values oscillated around 2.08% and
then continuously increased to reach 4.3% in September 2007. From this date to 15 September
2008, the day on which Lehman Brothers collapsed, the EONIA value remained at this level but
the volatility was higher than in previous periods. From the end of 2008 to July 2009, EONIA
values followed a downward trend as a result of European Central Bank (ECB) measures to im-
prove global liquidity. In the �rst few weeks of 2010, anxiety about excessive European national
debts again increased interest rates and volatility. In mid-2012, owing to successful �scal consol-
idation and implementation of structural reforms in the countries most at risk and various policy
measures taken by the ECB (such as quantitative easing), �nancial stability in the Eurozone
signi�cantly improved and interest rates steadily decreased to reach a �oor at approximately
0.13% in July 2012. A peak in activity observed from December 2013 to June 2014 is linked to
renewed fears about the solvency of Greece.

Table 3 presents estimates of ag, θg, and σg for the Vasicek model used to de�ne the threshold.
The �rst graph in Figure 1 presents a QQ plot of the residuals (σg)−1 (∆ri − ag(θg − rti−1)h

)
versus a normal distribution. As expected, the quality of the �t is poor because, in contrast
to the Vasicek model, the EONIA is not stationary. Choice of the threshold parameter α is
problematic and has an impact on the number of �ltered jumps. To determine its best value, we
compute the Jarque-Bera statistic for residuals σ−1

(
∆ri − a(θ − rti−1)h

)
on days when no jump

is observed for α ranging from 50% to 90%. The results, summarized in Tables 1 and 2, reveal
that the residuals are normal for α = 56%, with an 85% asymptotic p-value (skewness close to
zero and kurtosis nearly equal to three). This is con�rmed by the third and fourth QQ plots in
Figure 1.

For a such value of the threshold parameter, 36% of observations are considered as jumps and
the average amplitude of positive and negative jumps is approximately ten basis points (bps).
The cause of these jumps is not clearly identi�ed. However, we can reasonably hypothesize that
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they are related to a sudden change in the overall credit exposure of reference banks selected
for the EONIA. Alternatively, they are the consequence of changes in the monetary policy of
European central banks, such as adjustments of the overnight rate, or quantitative easing.

The EONIA variations separately attributed to Brownian and jump terms are plotted in Figure
2. It is evident that di�usion causes only small oscillations located in a [-1 bps +1 bps], whereas
the jump process explains the movements of highest amplitude. The clustering of jumps is
clearly visible. We can observe that EONIA variations attributed to Brownian motion are equal
to ±0.01% from 1 January 2004 to 31 August 2007. This is because the EONIA was reported
to only two digits during this period. Since 1 September 2007, the EONIA has been reported to
three digits.

Table 3 lists the drift and Brownian volatility parameter for the short-term rate when α = 56%.
Once jumps are removed from the sample, the volatility of the Brownian component decreases
from 1.51% to 0.09%. The mean reversion speed decreases from 0.52 to 0.36 and the mean
reversion level θ changes from 1.16% to 0.85%.

Table 4 shows �tted parameters for double-exponential jumps when α = 56%. In absolute
value, parameters ρ+ and ρ− are very close. The probability is also slightly lower for observation
of an upward jump than for a downward jump (p=46%). The fourth and �fth graphs of Figure
1 show QQ plots of �ltered jumps versus a double-exponential distribution. These con�rm that
choosing this distribution provides a reasonable �t for a threshold parameter of 56%.

Table 5 presents the calibration results for the intensity process. The mean reversion speed
for λt is high at 5.77. The mean reversion level is stable at 59.50 jumps per year. The parameter
that tunes the self-excitation of rt is δ and the calibration reveals that δ is signi�cantly not null.
This con�rms the presence of clustering e�ects in the EONIA dynamics. The value of δ is high be-
cause EONIA shocks are small on average: a jump of 5 bps causes an increase in intensity of 1.80.

In Figure 3, the �rst two graphs show simulated sample paths for rt and λt. The simulated
path for rt oscillates more than the real one, but contains periods of decline, sharp increases, and
stability that are comparable to the EONIA trend. The simulated sample path for λt, similar
to the real one, remains in the interval [90-210]. Without perfectly matching the EONIA time
series, these graphs reveal that the model shares some common features with EONIA trends.
Figure 4 compares daily EONIA variations simulated using the Hawkes-di�usion model and the
Vasicek model to real variations. The results reveal that in contrast to the Vasicek model, the
presence of a self-exciting jump process in the interest rate dynamics generates nonstationary
increments and more realistic sample paths.

In contrast to one-factor models, which cannot simulate nonparallel shocks for the yield curve,
our model can generate a wide range of deformations. This point is illustrated in the �rst graph
of Figure 5, which shows selected humped and inverse humped yield curves. The initial yield
curve is the one computed with parameters obtained via econometric calibration. The sensitivity
of the curve to changes in p, ρ+, ρ−, and δ is illustrated in the three next graphs of Figure 5.
Reducing the probability of upward jumps, p, �attens the yield curve and drives down expected
jumps. Increasing ρ+ lowers the average size of positive jumps, equal to 1

ρ+
. This decreases

prospective EONIA growth and �attens the yield curve. Reducing the parameter that tunes the
clustering e�ect, δ, is equivalent to decreasing the overall frequency of jumps. As these jumps
are slightly negative on average, this increases future short-term rates and the whole yield curve
is steeper.
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The econometric calibration relies on historical data, and parameters �tted using such an ap-
proach de�ne the dynamics of rt under the real measure of probability P . To estimate the value
of parameters under the risk-neutral measure, we work with market data for zero-coupon yields
(in euro) bootstrapped from swap curves observed over the last decade (13 maturities ranging
from 1 to 20 years). The risk premiums ξ and γ de�ning an equivalent risk-neutral measure
according to Eq. (19) are inferred on a given day by minimizing the sum of spreads between
model-based and swap yields. In practice, these premiums are not constant over time and are
directly related to the level of risk aversion in �nancial markets. Figure 6 shows the evolution
of these parameters �tted at a regular interval of 5 days of trading. ξ is negative and slightly
increasing from 2004 to 2011. As θQ = θ − ξσ

a , the mean reversion level during this period is
greater the one under the real measure P , and greater than the EONIA trend. This explains the
upward slope of swap curves. After 2011, θQ and θ tend to converge as ξ decreases. The plot
of EONIA versus θQ in Figure 6 reveals that markets always anticipate reversion of short-term
rates towards higher levels. The decrease in the spread between rt and θ

Q from 2011 to 2014
explains the �attening observed for swap curves.

It is also evident that γ oscillated around −20 during the last 4 years. Around the credit
crunch period, γ was signi�cantly higher. The last graph of Figure 6 presents the parameters
ρ+ and ρ− de�ning the size of jumps. Both parameters decreased in absolute value from 2006 to
2011. As they are inversely proportional to the average jump amplitude, this means that the size
of jumps and indirectly the overall volatility of rt evaluated by the market increased in this period.

Figure 7 shows selected implied volatility curves for a set of 1-year caplets with a 1-year tenor.
Prices were obtained using a Fourier transform with M = 210 discretization steps and ymax =
0.10. Implied volatility values were obtained by inverting the Black-Scholes formula for caplets.
These graphs illustrate the sensitivity of implied volatility to a change in key parameters de�ning
the jump process. The parameters and risk premiums are those retrieved for 31 December 2014
via econometric calibration. The probability p of observing a positive jump has a large impact
on caplet prices and volatility. When p increases, jumps are more often positive than negative
on average. Then the likelihood that the yield will hit the strike increases, as does the implied
volatility. A change in the frequency λt changes the steepness of the implied volatility curve.
An increase in δ indirectly increases the number of jumps that are negative on average. Then
the probability that the short-term rate will hit the strike at maturity is lower and the implied
volatility decreases. Finally, changes in ρ+ or ρ− also cause a clear parallel shift of implied
volatility.

5 Conclusions

We proposed a model for interest rates with a feedback mechanism that reproduces clustering
e�ects. The approach consists of adding a self-exciting jump process, also called a Hawkes pro-
cess, to classical mean-reverting Brownian dynamics. In contrast to similar credit risk models in
which jumps are unidirectional or even constant, shocks in our approach are positive or negative.
Regardless of their direction, shocks increase the intensity of jump arrivals. In addition to the
propagation feature, the model has several advantages over existing methods. First, this is a
two-factor model that replicates a wide range of yield curves, including humped, decreasing, and
increasing curves. Second, it belongs to the a�ne model class and semi-closed-form expressions
are available for its moment-generating function and for bond prices. There also exists a class of
risk neutral measures under which the dynamics of the short-term rate is similar to the dynamics
under the real measure. Third, the model is easy to calibrate using the peak-over-threshold pro-
cedure, which is robust and easy to implement for econometric purposes. Finally, such a model
can also be used to price most European interest rate derivatives under a forward measure via
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Fourier transform.

Our study of the EONIA over the last ten years provides clear evidence of the presence of
clustering e�ects. This con�rms the need to introduce a propagation mechanism in the dynam-
ics of short-term rates. Moreover, combining econometric calibration with an analysis of past
swap curves allows us to �lter risk premiums and the evolution of parameters under the market
measure. Two trends emerge from this exercise. First, the mean reversion level rate towards
which the EONIA revert decreases continuously and converges to spot rates. This explains
the �attening of the swap curve observed since 2010. Second, the average amplitude of shocks
decreases, which reduces the overall volatility of rates under the pricing measure.

Appendix A

Proposition 5.1. If Ji is a double-exponential random variable such as that de�ned by Eq. (1),
the moment-generating function of a weighted sum of Ji and |Ji| is equal to

E
(
ez1Ji+z2|Ji|

)
= p

ρ+

ρ+ − (z1 + z2)
+ (1− p) ρ−

ρ− − (z1 − z2)

if (z1 + z2) < ρ+, (z1 − z2) > ρ−.

Proof. By construction, the moment-generating function is equal to the sum

E
(
ez1Ji+z2|Ji|

)
:= pE

(
e(z1+z2)Ji |Ji ≥ 0

)
+ (1− p)E

(
e(z1−z2)Ji |Ji ≤ 0

)
. (38)

To evaluate conditional expectations in the last equation, we need the conditional densities. As
the conditional probabilities are

P (Ji ≤ x | Ji ≥ 0) =
P (0 ≤ Ji ≤ x)

P (Ji ≥ 0)
=
(

1− e−ρ+x
)
,

P (Ji ≤ x | Ji ≤ 0) =
P (Ji ≤ x)

P (Ji ≤ 0)
= e−ρ

−x,

the conditional densities are

d

dx
P (Ji ≤ x | Ji ≥ 0) = ρ+e−ρ

+x,

d

dx
P (Ji ≤ x | Ji ≤ 0) = −ρ−e−ρ−x.

On the basis of these results, the conditional expectations in Eq. (38) are given by the following
expressions:

E
(
e(z1−z2)Ji |Ji ≤ 0

)
=

ˆ 0

−∞
−e(z1−z2)xρ−e−ρ

−xdx (39)

=
ρ−

ρ− − (z1 − z2)
if (z1 − z2) > ρ−,

and

E
(
e(z1+z2)Ji |Ji ≥ 0

)
=

ˆ +∞

0
e(z1+z2)xρ+e−ρ

+xdx (40)

=
ρ+

ρ+ − (z1 + z2)
if (z1 + z2) < ρ+.
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Appendix B

Proposition 5.2. If Ji is a double-exponential random variable as de�ned by Eq. (1) and is
censored in the interval [−g , g], its truncated pdf is

d

dx
P (Ji ≤ x | Ji ≥ g ∪ Ji ≤ −g) =


+ p

pe−ρ+g+(1−p)eρ−g
ρ+e−ρ

+x x ≥ g

0 −g < x < g

− 1−p
pe−ρ+g+(1−p)eρ−g

ρ−e−ρ
−x x ≤ −g

.

Proof. The cumulative distribution function (cdf) for Ji censored in the interval [−g , g] can be
developed as follows:

P (Ji ≤ x | Ji ≥ g ∪ Ji ≤ −g) =
P (Ji ≤ x ∩ ( Ji ≥ g ∪ Ji ≤ −g))

P ( Ji ≥ g ∪ Ji ≤ −g)

=
P (Ji ≤ x ∩ Ji ≥ g) + P (Ji ≤ x ∩ Ji ≤ −g)

P (Ji ≥ g) + P (Ji ≤ −g)

=
P (Ji ≥ g)P (Ji ≤ x | Ji ≥ g) + P (Ji ≤ −g)P (Ji ≤ x | Ji ≤ −g)

P (Ji ≥ g) + P (Ji ≤ −g)
. (41)

From Eq. (2) we infer that the denominator in this last expression is

P (Ji ≥ g) + P (Ji ≤ −g) = pe−ρ
+g + (1− p)eρ−g.

The conditional probabilities in the numerator are given by

P (Ji ≤ x | Ji ≥ g) = Ix≥g
P (g ≤ Ji ≤ x)

P (Ji ≥ g)

= Ix≥g

(
1− e−ρ+(x−g)

)
and

P (Ji ≤ x | Ji ≤ −g) = Ix≤−g
P (Ji ≤ x)

P (Ji ≤ −g)
+ Ix>−g

= Ix≤−ge
−ρ−(x+g) + Ix>−g .

If we insert these expressions into Eq. (41), we have the following result for the truncated cdf of
Ji:

P (Ji ≤ x | Ji ≥ g ∪ Ji ≤ −g) =
p

pe−ρ+g + (1− p)eρ−g
Ix≥g

(
e−ρ

+g − e−ρ+x
)

+
1− p

pe−ρ+g + (1− p)eρ−g
Ix≤−ge

−ρ−x

+
1− p

pe−ρ+g + (1− p)eρ−g
Ix>−ge

ρ−g

and we can conclude by deriving this cdf.
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Threshold Jarque-Bera Asymptotic Skewness Kurtosis
α statistic p-value

55% 0.87 64.79% -0.05 2.95
56% 0.31 85.55% -0.03 3.01

57% 2.79 24.79% -0.09 3.07
58% 13.36 0.13% -0.14 3.30
59% 20.25 0.00% -0.15 3.38
60% 39.74 0.00% -0.14 3.62
70% 510.43 0.00% -0.17 5.27
80% 1484.73 0.00% -0.28 6.76
90% 2618.16 0.00% -0.41 7.86

Table 1: Jarque�Bera statistic and p-value for residuals (jumps excluded) �ltered using the
peaks-over-threshold procedure for di�erent threshold parameters. For α = 56% the skewness is
close to 0 and the kurtosis is equal to 3.

Threshold Yearly frequency E (max(Ji, 0)) |E (min(Ji, 0))|
α of jumps

55% 100.98 0.095% 0.086%
56% 92.85 0.103% 0.091%

57% 83.37 0.116% 0.098%
58% 76.23 0.124% 0.107%
59% 72.47 0.128% 0.112%
60% 67.38 0.137% 0.118%
70% 44.50 0.187% 0.163%
80% 31.81 0.229% 0.208%
90% 21.00 0.285% 0.275%

Table 2: Descriptive statistics for jumps �ltered using the peaks-over-threshold procedure for
di�erent threshold parameters.

All data Std Err. α =56% Std Err.

ag 0.5200 0.0026 [A3] a 0.3603 0.0016
θg 1.1621% 0.0106% θ 0.85% 0.0112%
σg 1.5135% 0.0302% σ 0.09% 0.0502%

Log likelihood 15618.44 (2820 observations) 14767.70 (1781 observations)

Table 3: The �rst column of this table shows the parameters of the Vasicek model, �tted by
log likelihood maximization. The second columns presents the volatility, the level and speed of
mean reversion, after removing variations of interest rates considered as jumps.
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α =56% Std. Err.

ρ+ 969.21 1.40
ρ− -1093.58 1.44
p 0.46[A4] 0.00

E(Ji) -0.0029%

Log likelihood 6575.89

Table 4: Fitted parameters for the distribution of jumps.

α =56% Std. Err.

λ0 102.64 0.71
κ 5.77 0.01
δ 3613.89 4.19
c 59.50 0.07

Log likelihood -1586.66

Table 5: Parameters de�ning the dynamics of the intensity of Nt.
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Brownian Part, α=56%
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Brownian Part α=80%
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Figure 1: The �rst graph is a QQ plot of residuals (σg)−1 (∆ri − ag(θg − rti−1)h
)
for the Vasicek

model versus a normal distribution. The second and third graphs are QQ plots of residuals
σ−1

(
∆ri − a(θ − rti−1)h

)
versus a normal distribution when jumps are removed from the data

set for α = 56% and α = 80%. The last two graphs are QQ plots of �ltered jumps versus a
double-exponential distribution for α = 56% and α = 80%.
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Figure 2: The �rst graph shows EONIA variations attributed to the di�usion part of rt. The
second graph shows EONIA variations considered as jumps. Both series are �ltered with a
threshold parameter set to 56%. EONIA variations attributed to Brownian motion are equal to
±0.01% from 1/1/2004 to 31/8/2007 because the EONIA was only reported to two digits over
this period. Since 1/9/2007, the EONIA has been reported to three digits.
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Figure 3: The �rst two graphs show simulated sample paths for rt and λt. The last two graphs
show the daily evolution for EONIA and the �ltered intensity λt, respectively, from 1/1/2004 to
31/12/2014.
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Figure 4: The �rst graph shows daily variations in the interest rate, ∆rt, simulated using pa-
rameters obtained for α = 56%. The second graph shows daily variations in ∆rt simulated using
a Vasicek model �tted to the same data set. The last graph shows EONIA variations observed
over the period 2004-2015.
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Figure 5: The �rst graph shows selected (model-based) yield curves. The three other graphs
illustrate the sensitivity of the yield curve to changes in key parameters de�ning the jump process.
The initial parameters are those obtained via econometric calibration.
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Figure 6: The �rst two graphs present the risk premiums ξ and γ minimizing the spread in the
yield to maturity between observed and modeled data. The third �gure compares the EONIA
with the mean reversion parameter under Q. The last graph shows the evolution of the jump
parameters ρ+Q and ρ−Q. Parameters under P are �tted for a con�dence level of α = 56%.
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Figure 7: Graphs showing the sensitivity of caplet implied volatility to changes in key parameters
determining the jump process. The caplets all have maturity and tenor of 1 year.
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