Y. Ait-sahalia, J. Cacho-diaz, and R. J. Laeven, Modeling nancial contagion using mutually exciting jump processes

Y. Ait-sahalia, R. J. Laeven, and L. Pelizzon, Mutual excitation in Eurozone sovereign CDS

E. Bacry, S. Delattre, M. Homann, and J. F. Muzy, Modelling microstructure noise with mutually exciting point processes, Quantitative Finance, vol.472, issue.7, pp.65-77
DOI : 10.1080/14697688.2011.647054

URL : https://hal.archives-ouvertes.fr/hal-01313995

L. Bauwens and N. Hautsch, Handbook of nancial time series: modelling nancial high frequency data using point processes, 2009.

O. E. Barndor-nielsen and N. Shephard, Power and bipower variation with stochastic volatility and jumps (with discussion), J. of Fin. Econ, issue.2, p.148, 2004.

O. E. Barndor-nielsen and N. Shephard, Econometrics of testing for jumps in nancial economics using bipower variation, J. of Fin. Econ, vol.4, p.130, 2006.

D. Brigo and F. Mercurio, Interest rate models -Theory and Practice, 2007.
DOI : 10.1007/978-3-662-04553-4

V. Chavez-demoulin, A. C. Davison, and A. J. Mcneil, A point process approach to value-atrisk estimation, Quant. Finance, vol.5, issue.2, p.227234, 2005.

V. Chavez-demoulin and J. A. Mcgill, High-frequency nancial data modeling using Hawkes processes, J. of Bank. and Fin, vol.2012, issue.36, p.34153426
DOI : 10.1016/j.jbankfin.2012.08.011

URL : http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0378426616302199&_ts=1480319159&md5=7d25c2641adc958695de225cb8f61861

K. Chen and S. Poon, Variance swap premium under stochastic volatility and selfexciting jumps. SSRN work. pap, p.2200172, 2013.

J. C. Cox, J. E. Ingersoll, and R. S. , A Theory of the Term Structure of Interest Rates, Econometrica, vol.53, issue.2, pp.385-407, 1985.
DOI : 10.2307/1911242

Q. Dai and K. J. Singleton, Specication analysis of ane term structure models, J. of Fin, p.55, 2000.

A. Dassios and J. Jang, A double shot noise process and its application in insurance, J of Math. and Syst. Sci, vol.2, pp.82-93, 2012.

D. Due and R. Kan, A yield-factor model of interest rates, Math. Fin, vol.6, p.379406, 1996.

E. Eberlein and W. Kluge, Exact pricing formulae for caps and swaptions in a L??vy term structure model, The Journal of Computational Finance, vol.9, issue.2, pp.99-125, 2006.
DOI : 10.21314/JCF.2005.158

P. Embrechts, T. Liniger, and L. Lu, Multivariate Hawkes processes: an application to nancial data, J. of Applied Proba, pp.48-367378, 2011.

E. Errais, K. Giesecke, and L. R. Goldberg, Ane point processes and portfolio credit risk

D. Filipovi¢ and S. Tappe, Existence of L?vy term structure models Fin. and Stoch, pp.83-115, 2008.

P. Giot, Market risk models for intraday data, The European Journal of Finance, vol.2, issue.4, p.309324, 2005.
DOI : 10.1016/j.jempfin.2003.04.003

D. Hainaut and R. Macgilchrist, An Interest rate tree driven by a L?vy process, J. of Deriv, vol.2010, issue.182, pp.33-45

A. Hawkes, Point sprectra of some mutually exciting point processes, J. of the Royal Stat. Soc. B, vol.33, pp.438-443, 1971.

A. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika, vol.58, issue.1, pp.58-8390, 1971.
DOI : 10.1093/biomet/58.1.83

A. Hawkes and D. Oakes, A cluster process representation of a self-exciting process, Journal of Applied Probability, vol.33, issue.03, pp.493-503, 1974.
DOI : 10.2307/3212006

. J. Hull and . A. White, Pricing interest rate derivatives. Rev. of Fin. Stud, p.573592, 1990.

C. Mancini, Non-parametric threshold estimation for models with stochastic diusion coecient and jumps. Scand, J. of Stat, vol.36, pp.270-296, 2009.

M. Salmon and W. W. Tham, Time deformation and term structure of interest rates. SSRN work. pap, 2007.

O. Vasicek, An equilibrium characterization of the term structure, J. of Fin. Econ, 1977.

X. W. Zhang, P. W. Glynn, and K. Giesecke, Rare event simulation for a generalized Hawkes process, Proceedings of the 2009 Winter Simulation Conference (WSC)
DOI : 10.1109/WSC.2009.5429693