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Integrated production scheduling and delivery route planning with multi-

purpose machines: A case study from a furniture manufacturing company 

 

Abstract 

Recently, many modern industries have adopted joint scheduling of production and distribution 

decisions. Such coordination is necessary in make-to-order (MTO) businesses, where it is 

challenging to achieve timely delivery at minimum total cost and meet the requirements for high 

customization. To deal with these challenges, a practical production configuration and delivery 

method is required, in addition to a closer link between production and distribution schedules. 

Hence, in this study, we address an integrated production scheduling-vehicle routing problem with 

a time window, where it is assumed that production is performed in a flexible job-shop system. 

Our framework is modeled as a novel bi-objective mixed integer problem, in which the first 

objective function aims to minimize a sum of the production and distribution scheduling costs, and 

the second objective function tries to minimize a weighted sum of delivery earliness and tardiness. 

To practically validate the application of our framework, a case study from a furniture 

manufacturing company producing customized goods is considered, and experimental data are 

derived. Based on the real data, the model is first optimally solved by an � −constraint method, 

and then a Hybrid Particle Swarm Optimization (HPSO) algorithm is developed to solve the model 

for medium- and large-sized problems in a reasonable time. We discuss the benefits of integration 

by comparing the results of the proposed model with that of the separate approach. The results 

show that the company can establish a proper rational balance between cost and customer 

concerns, and they can use the integration policy as a lever to improve customer satisfaction 

without the system experiencing a significant increase in total operational cost. 

 

Keywords: Supply chain scheduling, multi-objective optimization, integrated production-

distribution, � −constraint method, hybrid particle swarm optimization algorithm. 
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 1. Introduction  

 
Over the past decade, in real-world production industries, growing attention has been devoted to 

make-to-order (MTO) business, partially owing to their benefits in reducing finished products' 

inventory level, high customization, and adapting to rapidly-changing customer behavior. In such 

environments, finished products must be delivered to customers shortly after their production. 

More specifically, a company in an MTO environment must not only manage producing a high 

variety of customized products, they must also provide an on-time delivery. Nevertheless, timely 

delivery is pointless if it results in higher costs owing to excessive use of production and 

distribution resources. Therefore, to suitably optimize an MTO business, it is important to develop 

a level-headed optimization scheme that can simultaneously manage scheduling of production and 

distribution decisions for custom-made products. 

Traditional optimization of production and distribution schedules is performed separately and 

sequentially, such that jobs are first processed in a production facility without considering 

distribution decisions, and then finished products are delivered. Indeed, the outputs of the 

production scheduling become the inputs of the delivery scheduling. It is recognized that 

traditional approach, based on merely minimizing cost, not only fails to reduce the whole cost of 

the supply chain, but also fails to satisfy customers’ expectations for timely delivery. 

Thus, it is important to design a professional scheduling plan along with a suitable production and 

delivery configuration to adequately cope with MTO business optimization challenges, including 

high customization in customer quality and service standards, costly logistics services, and price 

and delivery time competition in the market. Thus, this study addresses an important variation of 

an integrated production-distribution scheduling (IPDS) problem, where production is performed 

in a Flexible Job-Shop (FJS) system, allowing us to have more flexible routing of the process, and 
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consequently a more impressive effect on the distribution side of the system. Despite FJS 

becoming an inevitable part of modern innovative industries, its optimization models and 

respective solving procedures are more complicated, and thus these types of systems are rarely 

discussed in the IPDS models’ literature. In that regard, a timely delivery of finished products, as 

performed by vehicle routing as a cost-effective delivery method with time windows and 

heterogeneous vehicles, is addressed by a limited number of IPDS studies. 

 Our research efforts concern not only the economic aspects of the integrated FJS scheduling-

vehicle routing decisions, but also the minimization of violations to the imposed delivery time 

windows. More importantly, we aim to find a joint scheduling optimization scheme for order 

processing in the production facility and order delivery, to simultaneously achieve the minimal 

cost of production and distribution scheduling and the highest possible level of customer 

satisfaction. We specifically study a situation where an integration strategy can play a key role in 

not only fulfilling customers’ expectations, but where, as we will illustrate, it is also capable of 

keeping production and distribution operations as economical as possible. Additionally, our bi-

objective structure allows us to derive a trade-off between cost and a minimal weighted sum of 

delivery earliness and tardiness, by using the integration option. In addition, solving a proposed 

model for a case study from a real MTO business enables us to practically demonstrate the 

applicability of our framework. 

The remainder of this paper is organized as follows: the next section reviews related works on the 

IPDS problem to derive the research gap and emphasizes the main contributions of this paper. 

Section 3 provides the problem description, as well as the case study which inspired us to develop 

it. The problem description is then followed by the mathematical formulation of the proposed 

model. Section 4 details the resolution techniques, namely the � −constraint, and the developed 
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hybrid particle swarm optimization (PSO) algorithms. Section 5 proves the applicability of our 

model on a small-sized example and on several medium- and large-sized test problems. We 

particularly show how our proposal permits decision makers to judge and tradeoff economic 

considerations and the customer time window satisfaction. Section 6 deals with an additional 

managerial insight pertaining to our model. We particularly show the benefits resulting from the 

integration of both production and distribution decisions. The conclusion and directions for future 

research are presented in Section 7. 

 2. Literature review 

Recently, growing attention has been devoted to the IPDS problem, which can be generally 

classified according to the machine configuration, e.g., multi-purpose or single task machines, 

delivery method, e.g., homogenous or heterogeneous types of vehicles, single or multi-objective 

frameworks of models, and the chosen objectives of the problem. Here, we review the most-related 

IPDS literature regarding a single factory and outbound delivery. Below, all variants of machine 

configurations and delivery methods are respectively represented. 

• Machine configurations: single machine, parallel machines, flow-shop configuration, open-shop 

configuration, job-shop configuration, bundling operation. 

• Delivery methods: Single delivery, direct delivery, routing, split delivery. 

An overview of related IPDS studies based on the above classification is provided in Table 1. 

Despite the fact that the integrated production and distribution problem at the scheduling level has 

received significant attention in recent years, the majority of the publications have restricted their 

focus to simple machine configurations, including: single machine (e.g. hall and Potts, 2003; Low 

et al., 2014; Li et al., 2016), identical parallel machines (e.g. Garcia & Lozano, 2005; Ullrich, 

2013; Liu and Lu, 2016), and unrelated parallel machines (Chang et al., 2013, Guo et al., 2015, 
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Joo and Kim, 2016). More specifically, very few studies on IPDS (Soukhal et al., 2005; Li and 

Vairaktarakis, 2007; Hassanzadeh et al., 2016) looked at the problem of order processing in multi-

stage production systems, such as flow-shop, job-shop, open-shop, and bundling operation 

environments, where the completion of a job follows the processing of a given set of operations 

(process routing). Although these researchers addressed an IPDS problem by considering process 

routing, they assumed only a flow-shop or bundling manufacturing system, for special cases of the 

problem. Moreover, their studies involved some unrealistic and simple assumptions, and never 

investigated practical features such as the general size of orders, heterogeneous vehicles, and 

delivery due dates (time windows). In addition, these works studied either direct shipment 

(Soukhal et al., 2005) or batch selection as a simple delivery methods (Hassanzadeh et al., 2016), 

and no routing delivery is involved in these studies, except in the work by Li and Vairaktarakis 

(2007), which addressed a milk run delivery as a special case of a vehicle routing problem (VRP). 

Moreover, according to Table 1, very few investigations on IPDS proposed a multi-objective 

model to elaborate on the inherent conflicts between cost and customer concerns (Cakici et al., 

2012; Li et al. 2016; Hassanzadeh et al., 2016). Furthermore, the existing bi-objective models did 

not consider production cost in the objective functions and did not study the impact of the 

integration on these two conflictive criteria, to validate the applicability of their proposed 

integrated models. Consequently, the question of how integration can act the role of a lever in a 

bi-objective framework to economically boost customer satisfaction has never been investigated 

by IPDS professionals. We also note that the IPDS literature has not yet reported on complicated 

manufacturing systems with a high range of customized products and flexible process-oriented 

systems. The reader is referred to Chen (2010) and Moons et al. (2016) for a comprehensive review 

on IPDS. 
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Our study contributes to the existing literature by investigating the following four issues. First, we 

examine a comprehensive real-world inspired scheduling problem, in which optimization of an 

FJS system in the presence of multi-purpose machines is integrated with a vehicle routing problem 

under time window (VRPTW) constraints, in an MTO supply chain. It is known that job-shop is a 

type of manufacturing process that fits the production of a high variety of customized products. 

However, as shown in Table 1 and to the best of our knowledge, none of the IPDS investigations 

concerning MTO business (e.g. Chang et al., 2013) studied the job-shop scheduling problem. 

Moreover, to the best of our knowledge, the current study is among the first investigations studying 

a flexible machine scheduling problem by considering transportation decisions. Second, in 

addition to filling the aforementioned research gaps, our study concerns a practical routing delivery 

problem with a soft time-window, meaning that a violation to the time windows is allowed, which 

provides a degree of flexibility in routing but can also degrade customer satisfaction. This is in 

contrast to hard time windows, where a violation to the time window is forbidden. Additionally, 

we consider different sizes of orders and a heterogeneous fleet composed of vehicles with different 

capacities, and fixed and variable costs. 

 Third, we combine and trade-off two conflicting performance measures in a bi-objective modeling 

framework: cost minimization, and customer satisfaction maximization. The cost function models 

joint production scheduling and distribution expenditures; whereas, the customer satisfaction 

models the time window aspects. The distribution cost depends on the number of vehicles (fixed 

cost) and the total distance traveled by each vehicle (variable cost), and the production cost 

includes the cost of operations processed on each machine. Fourth, and from a theoretical point of 

view, we model our problem as a generic bi-objective model. Thus, our model could be adapted 
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to solve other production and/or distribution systems with simpler machine (such as flow-shop) 

and/or delivery configurations (such as direct shipment and split delivery). 
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Table 1. Overview of the related integrated production-distribution scheduling (IPDS) studies  

Author(s) 
Flexible 
 job-shop 

VRP 
Process 
routing 

Multi-purpose 
machines 

Heterogeneous 
vehicles 

Objective (s) 
Multi 

objective  
Solution procedure  Other features  

Hall & Potts 2003 -  - - - - DC + CS - 
Dynamic 

programming 
Different scenarios 

Chen & 
Vairaktarakis 2005 

- �  - - - DC + CS - 
Heuristic, dynamic 

programming 
Different scenarios, 

make-to-order (MTO) 
Garcia & Lozano 

2005 
- - - - - Max Revenue - Tabu search, exact Time window 

Pundoor & Chen 
2005 

-  - - - - DC + CS  - 
Heuristic, dynamic 

programming 
MTO supply chain 

Soukhal et al. 2005 - - �  -  Min CT  - - - 
Li & Vairaktarakis 

2007 
-  milk run �  - - DC + CS  - Heuristic - 

Stecke & Zhao 2007 - - - - �  Min DC  - Heuristic MTO supply chain 

Amstrong et al. 2008 - �  - - - Max CS - Heuristic, B&B 
MTO supply chain, time 

window 
Geismar 2008 - �  - - - Max CS - Heuristic Short life span products 

Chen & Pundoor 
2009 

-  - - - - Min DC - Heuristic MTO 

Cakici et al. 2012 -  - - - �  
Min DC  
Max CS  

�  Heuristic - 

Viergutz & Knust 
2012 

- �  - -  
Max Service 

level  
- Heuristic MTO, Time window 

Chang et al. 2013 - �  - - - DC + CS  - Ant colony algorithm MTO 

Ullrich 2013* - �  - - �  CS - 
Decomposition, 

genetic 
Time window 

Low et al. 2014 - �  - - �  DC + CS  - 
Genetic algorithm 

(GA), 
Time window 

Guo et al. 2015 - - - -  PC+DC + CS - 
Harmony search 
based memetic 

MTO, multiple 
transportation modes 

Devapriya et al. 2016 - �  - - - DC + CS - 
GA, memetic 

algorithm 
Time sensitive products 

Hassanzadeh et al. 
2016 

- - �  -  
Min DC  
Max CS  

�  MOPSO, NSGA-II -  

Joo & Kim 2016 - - - - �  Min CT  - Genetic algorithm -  
Li et al. 2016 - �  - - - Min DC  �  NSGA-II - 
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Max CS  

Liu and Lu 2016 - - - -  Max CS - 
Approximation 

algorithm 
- 

Karaoglan & Kesen 
2016 

- �  - - - Max CS - 
B&B, simulated 

annealing 
Time sensitive product 

Saglam & Banerjee 
2017 

- - - - - 
Min PC+DC 

+ holding 
cost 

- Exact - 

Our study �  �  �  �  �  
Min PC+DC  

Max CS  
�  

Hybrid PSO,                     
ε-constraint 

MTO, time window 

PC: Production cost, DC: Distribution cost, CS: Customer satisfaction, CT: Completion time, 
* Ullrich (2013) assumed that vehicles are heterogeneous which differ in fixed cost and ready time 
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3. Problem statement 

This section first describes the investigated IPDS problem, then introduces the notations to be 

used in this study, and finally presents our proposed mathematical model. 

3.1. Problem definition 

We consider an MTO manufacturing system that produces a wide variety of furniture for different 

customers. At the beginning of the planning horizon, each customer places exactly one order, 

with a specified size and a time window within which the order should be delivered. The 

manufacturing company is responsible for producing received orders and transporting finished 

goods to the corresponding customers. As the products are custom-made, they must be delivered 

shortly after they are produced, in their imposed time windows. However, timely delivery requires 

more resources, such as a larger number of shipments in a delivery, that will increase the 

manufacturer's total cost. Therefore, the problem faced by the company is to jointly optimize 

production and distribution scheduling decisions, by minimizing the related total scheduling cost 

while meeting the committed time windows for order fulfillments. 

Production is performed in an FJS manufacturing system, with a set of multi-purpose machines. 

Each job comprises a fixed set of operations, each of which can be processed by different machine 

types in different processing times. However, each operation should be processed by one of the 

candidate machines, and each machine can process only one operation at a time. Therefore, in the 

production side, the company needs to determine which operation should be assigned to which 

machine through a given set of machines, and how to schedule assigned operations on each 

machine. Moreover, transportation is performed with a limited number of heterogeneous vehicles 

having different capacities, and fixed and variable costs. After jobs are completed, they are 

batched together in different vehicles for delivery to respective customers. The total size of each 
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delivery batch must not exceed the capacity of the vehicle. Each vehicle is initially stationed in 

the production facility, and after serving the specified route, returns to the production facility. It 

is realistically assumed that the starting time of each vehicle’s tour is equal to the completion time 

of the last job in the vehicle’s cargo. Hence, on the distribution side, the company should 

determine how many shipments of each vehicle type to use, which customer should be served in 

which trip, the sequence of orders in each trip, and schedule the time for the departure of each 

shipment from the production site. We model the problem as a joint production-distribution 

scheduling framework and propose a novel bi-objective mixed integer model, trying to identify 

the best path and schedule of operations through machines, and the optimal arrangement of 

vehicles, routes, and the ideal departure time of vehicles from the production site. This is to 

simultaneously satisfy the two conflicting objectives: minimizing the production and distribution 

scheduling costs and minimizing the weighted sum of delivery earliness and tardiness. In the 

proposed model, the distribution cost involves a fixed charge for each of the vehicles used, and a 

variable cost in the total distance of the route taken by the vehicles. In a job-shop environment, a 

job may be processed by different machine types and probably by different processing times and 

costs, and it is therefore necessary to also consider the production cost as an important component 

of the total cost of system. 

The framework described earlier is inspired from a real case study, from which we extract and 

use data in our numerical experiment. The company operates in the wood furniture sector, and 

they are subject to increasing pressure from product customization and growth in customer 

concerns. Adopting the MTO business model and producing custom-made products are becoming 

more and more relevant in this industry sector. One of the most famous and well-established 

customized-furniture companies (established in 1995 in the Middle East) is used as a case study 
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herein. When it was created, the company started its activity by producing folding beds. Today, 

it produces a wide range of space-saving modular furniture. In 2001, with progress in technology 

based on the presence of modern machines, the company mechanized its production system, and 

improved customer satisfaction through developing the diversity and quality of the produced 

goods. In recent years, the company has expanded the range of its product catalog, and they have 

given customers a higher degree of product customization. Figure 1 illustrates some of the 

products offered by the company (office and other types of furniture, tables and chairs, drawers, 

bedding set, child bedding set, folding sets such as bed and furniture), and clearly shows the 

diversity and customization challenges facing the company.  

     

Figure 1. Various types of customized goods produced by the company under studied 

 

3.2. Notations  

In this section, the notations used in discussion of the problem under investigation are introduced 

as follows:  

Sets  
ω = �1, … , ��               set of parts, indexed by 	, 
, 
ηj = �1,2, … , 
��            set of operations of part j, indexed by �, �                                           
Φ = �1,2, … , ��           set of machines, indexed by �                                            
Ω = �1,2, … , ��            set of available vehicles, indexed by � 
Parameters ��                           unit processing cost on machine m per unit of time ��                            fixed cost of vehicle type v 
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��                                variable cost of vehicle type v per unit of time �                           weight of early delivery �                             weight of tardy delivery ����                            processing time of operation � of job (order) j on machine m  ���                            process-machine matrix, which takes value 1 if machine m enables to process operation 
r of job j; otherwise it is equal to 0 !"��                               transportation time from customer i to customer j by vehicle v #�                                  size of job 
 ( � , %�)                            delivery time window of job 
 '�                                capacity of vehicle v 

  
Decision variables 

-Production side (��                                production start time of operation � of job j )��                                 production completion time of operation � of job j *�                                  production completion time of job j +���                             a binary variable which takes the value 1 if operation � of job j is processed by machine 
m, and 0; otherwise.                   ,"-���                           a binary variable which takes the value 1 if operation � of job j is processed 
immediately after the operation f of job i, both on machine m, and 0; otherwise. 

-Distribution side .�                                 delivery time of order j /��                              visiting time of customer (order) j by vehicle v 0�                             leaving time of vehicle v from production facility 1�                                visiting time of the last customer (order) in the tour of vehicle v 2��                               a binary variable which takes the value 1 if job j is delivered by vehicle v, and 0; 
otherwise. 3"��                              a binary variable which takes the value 1 if job j is delivered after job i, by vehicle v, 
and 0; otherwise. 4�                          a binary variable which takes the value 1 if vehicle v is used for delivery, and 0; 
otherwise.      

 

 3.3. Mathematical model 

The investigated IPDS problem is formulated as the following mixed integer nonlinear model: 

min �8 = : : : ������+���
;

�<8
=>

�<8
?

�<8@AAAAAABAAAAAAC-88
+ :E��4�+��(1� − 0�)FG

�<8@AAAAAABAAAAAAC-8H
 (1) 

�	I �H = � × : � KL.� − %� , 0N?
�<8 + � × : � KL � − .� , 0N?

�<8  (2) 
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Subject to:  

: +���
;

�<8 = 1 ∀
 ∈ ω ,   ∀� ∈ ηj (3) 

+��� ≤  ��� ∀
 ∈ ω, ∀� ∈ ηj, ∀� ∈ Φ (4) 

+"-� = : : ,"-���  =>

�<8
?V8
�<8  ∀	 ∈ ω ,    ∀� ∈ ηj , ∀� ∈ Φ (5) 

+��� = : : ,"-���    =W

-<8
?

"<X  ∀
 ∈ ω ,    ∀� ∈ ηj   ∀� ∈ Φ (6) 

(�� ≥ � K Z)�(�[8), : : : )"- × ,"-���
;

�<8
=W

-<8
?

"<X \ ∀
 ∈ ω ,   ∀� ∈ ηj (7) 

)�� = (�� + : ���� × +��� ;
�<8  ∀
 ∈ ω ,   ∀� ∈ ηj (8) 

*� = )�=>  ∀
 ∈ ω (9) 

: : : ,EXF-��� = 1 =>

�<8
=]

-<8
?

�<8  ∀� ∈ Φ (10) 

: : : ,"-E?V8F�� = 1=^_`

�<8
=W

-<8
a

"<8  ∀� ∈ Φ (11) 

: 2�� = 1 G
�<8  ∀
 ∈ Ω (12) 

2�� = : 3"�� ?
"<X  ∀
 ∈ ω , ∀� ∈ Ω (13) 

: 3"�� = : 3�"�
?V8
"<8

a
"<X ≤ 1 ∀
 ∈ ω , ∀� ∈ Ω (14) 

: 3EXF�� = : 3"E?V8F� ≤ 1?
"<8

?
�<8  ∀� ∈ Ω (15) 

: 2��#� ≤ '�
?

�<8  ∀� ∈ Ω (16) 

/EXF� = 0� = max�∈e 2��*� ∀� ∈ Ω (17) 



15 
 

/�� = : 3"��L/"� + !"��N?
"<X  ∀
 ∈ ω , ∀� ∈ Ω (18) 

.� = : 2��/��
G

�<8  ∀
 ∈ ω (19) 

1� = 0� + : : 3"��!"��  ?V8
�<8  ?

"<X  ∀� ∈ Ω (20) 

4� = max�∈e 2�� ∀� ∈ Ω (21) 

+���, ,"-���, 2�� , 3"��, 4� ∈ �0,1� 
∀	, 
 ∈ ω, ∀�, � ∈ ηj, ∀� ∈ Ω, ∀� ∈ Φ 

(22) 

 (�� , )�� , *� , .� , /�� , 0�, 1� ≥ 0 ∀
 ∈ ω, ∀� ∈ ηj, ∀� ∈ Ω (23) 
 

Equation (1) is the first objective function, and represents the total cost of the production-

distribution system, including machine processing cost (�88) and distribution cost (�8H). The 

latter is composed of a fixed cost function of the vehicles utilized, plus a variable cost function of 

the total distance of the routes taken by the vehicles. Equation (2) introduces customer 

satisfaction, and it aims to minimize the weighted sum of delivery earliness and tardiness. 

Constraints (3) guarantee that each operation of each job must only be assigned to one machine. 

Constraints (4) denote that each operation of each job should be assigned to a machine that is able 

to process it. Constraints (5) and (6) restrict operations such that each operation on each machine 

has only one operation before it, and only one other operation after it, respectively. Orders 0 and 

N+1 are two dummy orders having processing time 0 (�EXF�� = 0). At the beginning of each 

machine processing, operation r of order 0 must be processed first, and operation r of order N+1 

must be processed last. In addition, the completion time and also starting time of operation r 

belonging to order 0 and N+1, are 0 ()EXF� = 0 , (EXF� = 0, )E?V8F� = 0, (E?V8F� = 0). Constraints 

(7) guarantee that each operation of each job can at least begin when the completion of its 

predecessor operation ()�E�[8F) on any machine is finished, and the respective machine is not busy. 
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Constraints (8) calculate the completion time of each operation, which is equal to its starting time 

plus its processing time on the respective machine. Constraints (9) calculate the completion time 

of each job j. Constraints (10) ensure that only one operation is processed first on each machine 

m. Constraints (11) guarantee that only one operation is processed last on each machine m. 

Constraints (12) denote that each job should be only assigned to one of the available vehicles. 

Constraints (13) restrict each order in each tour to having only one order before it. Constraints 

(14) specify that each vehicle should leave immediately after delivery of the assigned orders to 

the related customers. Constraints (15) guarantee that each vehicle begins its tour from the 

production plant and returns to it only once. Here, in the distribution scheduling, two dummy 

orders are used to show that in each delivery batch, order 0 first departs from the company, and 

order n+1 at the end of each tour returns to it. Constraints (16) guarantee that the capacity of each 

vehicle is not exceeded by the total size of the orders. Constraints (17) specify that the departure 

time of each vehicle is equal to the biggest production completion time of all jobs in the batch. 

Constraints (18) denote that the delivery time of order j in vehicle v is equal to the receiving time 

of the prior order i by this vehicle, plus the traveling time between customers i and j. Equations 

(19) give the calculation of the delivery time of each order in each trip. Constraints (20) imply 

that the end time of each tour is equal to its starting time from the production site plus the total 

time of the routes taken by each vehicle. Constraints (21) determine which vehicles are used for 

delivery. Finally, Constraints (22) and (23) define the variable types. 

3.4. Linearization 

The proposed model is a nonlinear mixed-integer programming model. Before solving the model, 

we use some theoretical techniques to make the model linear, and consequently more tractable. 
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As seen in Equation (2) and Constraints (7) and (21), we used the maximum operator, which is 

an explicit nonlinear term. The max (min) operator is linearized by default when IBM ILOG 

CPLEX is used, by the help of the maxl (minl) function. Theoretically, to make the proposed 

model more efficient, they can be linearized. Supposing that we have a generic nonlinear term as 

max (x1, x2, x3, ..., xn), it can be converted to an equivalent linear structure by introducing a new 

positive variable y and a set of binary variables zi, and by adding the following constraints: 

� K(K8, KH, Kf, … , Ka)� g (24) 

g ≥ K"                       ∀	 = 1, … , I (25) 

g ≤ K" + � × h"        ∀	 = 1, … , I (26) 

: h"
a

"<8 ≤ I − 1 
(27) 

In the above, M is an arbitrarily large number. Constraints (25) state that g should be greater than 

all K", as g is the maximum of K". Constraints (26) and (27) ensure that at least for a single i, g 

must be lower than or equal to K" , to prevent y from approaching infinity. It should be noted that 

when the objective function is “minimization”, the constraints (26–27) are not necessary, but 

when the objective function is “maximization” and/or the model structure is “multi-objective”, 

these constraints are compulsory. 

Moreover, we have some bilinear terms as 2��/�� and )"-,"-��� in the model, and these terms are 

explicitly nonlinear. Without loss of generality, suppose that we have a bilinear term as x.z, where 

x is a positive variable and z is a binary variable. Again, by introducing a new positive auxiliary 

variable g and adding the following constraints, it can be converted to an equivalent linear 

structure as follows: 

K. h →  g (28) K − (1 − h) × � ≤ g ≤ K (29) 
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g ≤ � × h (30) 

Again, M is an arbitrary large number. 

4. Solving procedures  

As discussed in the prior section, the investigated IPDS problem is formulated as a nonlinear bi-

objective model that is converted to a linear bi-objective one. Most practical scheduling models 

naturally involve the problem of simultaneous optimization of a number of objectives which 

might be in conflict with each other. Such problems, known as ‘multi-objective optimization 

problems’, aim to simultaneously optimize several conflicting criteria. In contrast to single-

objective models that generate a single optimal solution, multi-objective models give a set of 

optimal solutions, named a Pareto optimal set, or non-dominated solutions that dominate other 

solutions. Indeed, Pareto solutions are solutions which cannot improve one of the objectives 

without degrading at least one other objective (Deb, 2001). 

Owing to the non-deterministic polynomial-time hardness (NP-hard) nature of both FJS 

scheduling problems (Garey et al., 1976; Kacem et al., 2002) and VRP (Dantzing and Ramsar, 

1959), our proposed model would consequently also be NP-hard. To solve the proposed problem 

in small-scaled instances, various exact techniques from multi-objective decision making 

(MODM) methods can be utilized. Nevertheless, these methods are not able to solve large-sized 

problems within a reasonable time, pushing us to develop a hybrid meta-heuristic algorithm. 

4.1. k-constraint method  

The bi-objective nature of the proposed IPDS model enables us to apply some MODM techniques 

to solve it for small-scaled instances. MODM techniques are categorized as a priori, a posteriori, 

and interactive methods. Under an a priori method, a multi-objective optimization model is 

converted to a single objective model, and a decision maker (DM) puts his/her preferences before 

solution procedure. In an a posteriori method, the DM selects his/her most preferred solutions 



19 
 

from among a set of generated optimal solutions (Pareto set), and in the interactive method, the 

DM is involved in the search procedure, and his/her preferences influence the direction in which 

the feasible space is being explored (Mirzapour Al-e-hashem and Rekik, 2014, Mirzapour Al-e-

hashem et al., 2019). 

The �-constraint method is a well-recognized a posteriori technique. In this technique, in each 

step, one of the objective functions is optimized, while others are added as the constraints of the 

model with upper bound �, as follows: 

�	I �8 
s.t �H ≤ �H   ⋮ �a ≤ �a    
To solve a multi-objective optimization problem with the �-constraint method, the following steps 

are required: 

1. One of the objective functions is selected as a primary objective to be optimized, and the other 

objectives are converted into constraints of the model by considering � as the upper bound for 

each of them.  

2. Each objective function is optimized individually, and then the interval m" = (�"∗, �"[) between 

the optimum and the worst values of the objective function �"(	 = 2, … , I) is divided into a pre-

specified number (m), and the values of �H, … , �a, are then calculated, accordingly.  

3. The problem created in step 1 is solved several times, with different values of �" varying in the 

interval Ii, to deduce a set of Pareto solutions.   

4.2. Hybrid Particle Swarm Optimization (HPSO)  

As the investigated IPDS problem is NP-hard, it is crucial to develop heuristic or meta-heuristic 

algorithms to handle the problem for large-sized instances. Moreover, owing to the multi-
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objective framework of the model, a modified version of these algorithms is required. Thus, a 

hybrid approach, combining the � −constraint method and PSO algorithm and capable of 

producing Pareto solutions, is proposed to solve the model in large (or medium-sized) instances.  

(PSO is a social-based evolutionary technique introduced by Kennedy and Eberhart in 1995 for 

solving continuous optimization problems. The basic idea for developing the theory of the particle 

swarm is driven from the social behaviors of animals like birds and fishes. The PSO algorithm is 

initialized with a population (or swarm in PSO) of random solutions, named particles, flying 

through the solution space with a velocity, and updating themselves by following the previous 

optimum particles. The process of the developed hybrid PSO (HPSO) algorithm is structured as 

the following steps: 

1. Set counter = 1 (counter =1, …, MaxIt), m = 1 (m = 1, …, M, M is the size of the Pareto set, 

e.g., M=10) and initialize a population of N particles/solutions. 

2. Set � = �H�"a + � × L-opqr[-opWsN;   

3. for each 	 = 1, … , �: 

3.1. Initiate the t" (position of each particle). 

3.2. Initiate the �uv" (speed of each particle), and set it equal to 0. 

4. Compute the cost function of particle i by applying �8, plus the penalty of total violations for 

the model constraints (3–23) and that belonging to the second objective function (�H), which is 

already converted to the constraints with an upper bound � and a pre-specified number (m). 

5. Set the exiting best position of particle i (t%uw!") equal to the initialized position of particle i. 

6. Find the best position of all particles in the population (x%uw!). 

7. Update the velocity of particle i using the following equation: 

�uv" = y ∗ �uv" + *8 ∗ � Iz8 ∗ (t%uw!" − t") + *H ∗ � IzH ∗ (x%uw! − t") , 
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where *8and *H stand for the weights for moving a particle toward the best positions of individual 

particles and moving a particle toward the best position in the swarm, respectively. w is the inertia 

weight, and it represents the willingness of the particle to keep its velocity from the previous 

iteration. � Iz8 and � IzH are two random parameters in the range of [0,1].  

8. Update the position of particle i by applying the following equation: 

t" = t" + �uv"                                                                                                                
 9. Compute the cost function of particle i by applying �8 plus the penalty of total violations for 

the model constraints (3–23), and that for the second objective function (�H) converted to the 

constraints and restricted by a upper bound �. 

10. If the current value of objective function for each particle i is better than the t%uw!" , then 

assign the current position of particle i to t%uw!".  
11. If the current value of objective function for each particle i is better than gbest, then set the 

current position of particle i equal to gbest. 

12. If counter= MaxIt, or any termination criteria are met, report the best solution and go to step 

13, otherwise go to step 6. 

13. If m=M stop, otherwise set m=m+1 and go to step 2. 

5. Computational results 

The aim of this section is fourfold: 1) to validate the applicability of the proposed model in small-

sized problems, 2) to illustrate the implications of the integration contribution on both cost and 

customers, 3) to show Pareto optimal solutions and also that substantial conflict exists between 

the two given objectives, and 4) to examine performance of the proposed HPSO algorithm in 

medium-and large-sized problems. 
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 5.1. Numerical illustration 

Here, based on the data derived from one working day of the case study, our novel optimization 

model is implemented for a small-sized illustrative numerical example, to show the optimal 

configurations of production, vehicles, and routes under different preferences of the DM, and to 

depict a Pareto optimal set. 

 Assume the numbers of orders (I), operations for each job (R), processing machines (M), and 

available vehicles ( �) as equal to 3, 3, 2, and 6, respectively. The variable transportation cost per 

minute (��), the weights of earliness (μ) and tardiness (�), the size of jobs L#�N, and the 

processing cost on each machine (��) are assumed to be equal to 1 (for all vehicles), 0.3, 0.7, 

[48, 36, 35], and [350,400], respectively. The time window for each order | � , %�} is set as  � =
E70,100,190F and %� = E90,120,210F. The data regarding capacity and the fixed cost of each 

vehicle are listed in Table 2. It is noteworthy that the capacity is given by an aggregate unit that 

is equivalent to a wooden part with approximate dimensions of 1.5×0.2×0.05 m3, as the products 

are assembled in a customer zone, and the trucks often transport separated unassembled parts. In 

addition, information data regarding processing time and a process-machine matrix related to 

operation � of job (order) j on machine m are provided in Tables 3 and 4, respectively. The travel 

distances between customer 	 and 
 are provided in Table 5. 

Table 2. Vehicles Data 

Vehicle type v Capacity   Fixed cost 

           1 90  180 

           2 80  200 

           3 100  100 

           4 70  165 

           5 105  120 

           6 85   150 
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Table 3. Processing time of operation r of order j on machine m 

Machine  
Job 1 2 

 
        3 

Operation 1            2            3 
 
 

   1             2              3      1            2                  3 

1 
 

10            8            6 
 

   12           6             11 
 

        12             7                 8 

2   7             9           11      7            10            8           6              11              10 
 

Table 4. Process-machine matrix 

Machine  
Job 1 2 

 
        3 

Operation 1            2            3 
 
 

   1             2            3 
 

     1            2             3 

1 
 

 1             0             1 
 

   1            1             0 
 

          0             1            1 

2   0             1             1     1            0             1            1             0            1 
 

        Table 5. Transportation time between the customers 

Customer j 0 1 2 3 

0 0 88 71 45 

1 88 0 41 75 

2 71 41 0 38 

3 45 75 38 0 
 

The proposed IPDS model and � −constraint method are coded under the optimization 

programming language (OPL) and a CPLEX script, via the IBM ILOG CPLEX Optimization 

Studio 12.8. 

We solved the proposed IPDS model for three different values of �, and derived the optimal 

solutions for each one. The obtained values of two given objective functions, the total cost of 

production and distribution (�8), and the weighted sum of delivery earliness and tardiness (�H) are 

presented in Table 6. Details of the obtained results for the most important decision variables, i.e., 

production scheduling, distribution scheduling, and routing, are reported in Tables 7, 8, and 9. 
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Moreover, the assignment of the operations to each machine and the routes taken by the vehicles 

are schematically shown in Figures 2, 3, and 4, under the three different values of �, respectively. 

a) In a first situation, the DM aims to optimize the total scheduling cost without considering 

customer satisfaction (the weighted sum of delivery earliness and tardiness). The value of � is 

equal to �H���, and the � −constraint model used to generate the optimal solution is as follows: 

Model P1: �	I�8  
s.t 
Constraints (3–23) �H ≤ �H���  

 b) In the second solution of the Pareto set, the DM is concerned regarding the total scheduling 

cost three times more than regarding the customer concerns, and we used the following 

� −constraint model, in which the value of � is equal to  -opqr[-opWs
� + �H�"a . 

Model P2: �	I�8 
s.t 
Constraints (3–23) 

�H ≤ �H��� − �H�"a4 + �H�"a 

c) In the last Pareto point, the DM aims to minimize the total scheduling cost, while the weighted 

sum of delivery earliness and tardiness is restricted to its best value (�H�"a). In this situation, � is 

equal to �H�"a, and the applied � −constraint model is as follows:  

Model P3: �	I�8 
s.t 
Constraints (3–23) �H ≤ �H�"a 
 

          Table 6.  Optimal solutions of two given objective functions for different values of � 

   �8 (total scheduling cost) 25460 25500 26720 �H (tardiness/earliness) 103.7 51.3 21 

  � = -opqr[-opWs
� + �H�"a  � = �H���      

 � = �H�"a      
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    Table 7. Optimal solutions of the �-constraint method for � = �H��� 

Production sub problem 
  

Distribution sub problem 
 (�,�  Value )�,� Value    0� Value 1� Value .�  Value 

             ( (3,1) 0 )(3,1) 6 

  

 S(3) 21 E(3) 111 D(1)                  173 ( (3,2) 6 )(3,2) 13  S(5) 61 E(5) 261 D(2) 132 ( (3,3) 13 )(3,3) 21      D(3) 66 ((1,1) 21 )(1,1) 31 

  

       ((1,2) 31 )(1,2) 40        ((1,3) 40 )(1,3) 46        ((2,1) 40 )(2,1) 47 

  

       ((2,2) 47 )(2,2) 53        ((2,3) 53 )(2,3) 61        

Production cost (�88)                         24950$  Distribution cost (�8H)                        510$ 

   

 
Figure 2. Schematic results of the � −constraint method for � = �H��� 

 
In the first solution of the Pareto set (Table 7), in which the DM concentrates on cost and ignores 

customer satisfaction, none of the orders are delivered in their committed delivery time window 

(see data in section 6.1). Moreover, according to Figure 2, under this value of � (� = �H���), the 

majority of the orders are processed on machine 1, which has the lowest processing cost, and the 

total time of the routes taken by the vehicles (∑ (1� − 0�)G�<8 ) equals 290 minutes, as the lowest 

possible time for distributing the orders in this example. Indeed, the DM is enabled to act 

according to his/her priority to merely optimize cost, without regarding customer concerns. More 
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importantly, the pickup times and configurations of production, vehicles, and routes are not 

designed to deliver finished products by their given deadliness. For example, as the deadline of 

the order 1 has the earliest due date, it should be processed and the delivered first of all; 

alternatively, order 3 could be processed and delivered last to avoid early delivery.  

 Table 8. Optimal solutions of the �-constraint method for � = -opqr[-opWs
� + �H�"a 

Production sub problem 
  

Distribution sub problem 
 ((�,�) Value )(�,�) Value    0(�) Value 1(�) Value .(�) Value 

             ((1,1) 0 )(1,1) 10 

  

 S(3) 29 E(3) 205 D(1) 117 ((1,2) 13 )(1,2) 22  S(5) 37 E(5) 191 D(2) 120 ((1,3) 23 )(1,3) 29      D(3) 82 ((2,1) 0 )(2,1) 7 

  

       ((2,2) 10 )(2,2) 16        ((2,3) 22 )(2,3) 30        ((3,1) 7 )(3,1) 13 

  

       ((3,2) 16 )(3,2) 23        ((3,3) 29 )(3,3) 37        

Production cost (�88) 24950$  Distribution cost (�8H) 550$ 

 

Figure 3. Schematic results of the �-constraint method for � = -opqr[-opWs
� + �H�"a 
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In this solution, the DM is concerned with customer satisfaction to some extent (its weight is one 

third of the cost). Indeed, here, the DM respects the customer due dates more than in the previous 

scenario. Following that and according to Figure 3, order 2 is delivered in its given delivery time-

window whereas orders 1 and 3 are not delivered on time, and the total time of the routes taken 

by the vehicles increases from 290 to 330 minutes, meaning that the model is working accurately 

in accordance with the DM setting his/her preferences. 

 

Table 9. Optimal solutions of the �-constraint method for � = �H�"a 
 

Production sub problem                                                                      
 

Distribution sub problem 
 0(�,�) Value *(�,�) Value    0!(�) Value 1!(�) Value .!(�) Value 

             
S(3,1) 0 C(3,1) 6 

  

 St(3) 32 Et(3) 240 Dt(1) 120 

S(3,2) 10 C(3,2) 17  St(5) 40 Et(5) 182 Dt(2) 111 

S(3,3) 22 C(3,3) 32      Dt(3) 195 

S(1,1) 0 C(1,1) 10 

  

       

S(1,2) 13 C(1,2) 22        

S(1,3) 23 C(1,3) 29        

S(2,1) 6 C(2,1) 13 

  

       

S(2,2) 17 C(2,2) 23        

S(2,3) 32 C(2,3) 40        

Production cost (�88) 26150$  Distribution cost (�8H) 570$ 

 

 
Figure 4. Schematic results of the �-constraint method for � = �H�"a 
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In the last solution of the Pareto set (Table 9), and conversely to the previous one, the DM aims 

to minimize the total operational cost, whereas the delivery earliness or tardiness is already 

optimized. Indeed, this situation is equivalent to one where the DM is only concerned with 

customer satisfaction. In more detail, Figure 4 depicts that in contrast to the first solution, orders 

2 and 3 are delivered in their given delivery time-windows, and the majority of the operations are 

processed on machine 2, which has a higher processing cost but allows the system to deliver the 

products on time by avoiding bottlenecks. In addition, the total time of the routes taken by the 

vehicles increases from 330 to 350 minutes, which is the highest time for routes to be served.  

We also note that according to Table 6, in the first solution of the Pareto set, the first objective 

function (minimizing the total production and distribution scheduling cost) equals 25460, and in 

the second and last solutions increases to 25500 and 26720, respectively. Additionally, in the first, 

second, and last solutions, the value of the weighted sum of delivery earliness and tardiness as 

the second objective function decreases as follows: 103.7 � 51.3 � 21. This simply confirms 

the existing conflict between the two objective functions. 

Consequently, our framework allowed the DM to judgmentally choose the value of �, and to 

integrate the customer concerns in his/her optimization of cost. Indeed, by enabling the integration 

option, our model permits the DM to judgmentally create a balance between the two conflicting 

objectives.  

It is also worthwhile to show the Pareto set of optimal solutions, which allows the DM to select 

the most preferred solutions according to his/her preferences, and it shows the substantial conflict 

that exists between cost and customer concerns. Figure 5 depicts the Pareto optimal solutions, 

wherein by decreasing the weighted sum of delivery earliness and tardiness, there is an increase 

in the total cost of production and distribution. 
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Figure 5. Total cost of production and distribution (�8) against the weighted sum of delivery 

earliness/tardiness (�H) 

  
5.2. Performance of HPSO 

In this section, we conduct a computational experiment to evaluate the performance of the 

proposed metaheuristic algorithm. In particular, 15 test problems taken from the applied case 

study in small, medium, and large sizes are solved by a proposed HPSO, and then the obtained 

results are compared with the optimal solution (or lower bound) of CPLEX. The proposed HPSO 

is coded in MATLAB R2015a, and all computations are run on a PC with 2.2 GHz and 7.89 GB 

RAM under Microsoft Windows 7. 

In each case of small, medium, and large size instances, 5 test problems are generated, in which 

the variable delivery cost per minute is �� = 1, and the weights of earliness and tardiness are µ =
0.3 and � = 0.7, respectively. The size of the orders, the delivery time window, the shipping time 

between customers, and the processing time of each operation of each job are drawn from #� ∈ 

[10, 60],  � = E70,300F, %� =  � + 20, !"� ∈ [10 100], and ���� ∈ [6 12], respectively. The 

capacity and the fixed cost of the vehicles are respectively drawn from '� ∈ [50 200] and �� ∈ 

[100 200], and finally, the processing cost of each machine (��) is randomly generated between 

[300 700]. 
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Each test problem is solved for two points of the Pareto set under models P1 and P2, where the 

value of � is equal to �H��� and �H�"a, respectively. In this manner, all test problems are first 

solved by the � −constraint method via CPLEX and then are solved by the developed HPSO 

algorithm, and the obtained results are reported in Table 10. In Table 10, the ���8 (in percentage) 

is used to calculate the percentage deviation of the average first objective function (total cost of 

production and distribution) obtained by HPSO (�8����) from the one obtained by CPLEX (�8��), 

and is calculated as follows: 

���8 = �8���� − �8���8�� × 100 

In addition, ���H (in percentage) is the deviation of the average of the second objective function 

(weighted sum of delivery earliness and tardiness) obtained by HPSO (�H����) from the one 

obtained by CPLEX (�H��), and its formulation is as follows: 

���H = �H���� − �H���H�� × 100 

It should be noted that CPLEX could not generate a model to solve some of the larger-sized 

problems. Moreover, for some test problems, CPLEX could not solve the proposed model in 

under two hours, and we used the lower bound of the problem as reported by the CPLEX to 

calculate the gaps.  

As seen in Table 10, the HPSO algorithm converges to optimal solutions in less than eleven 

minutes for all medium-sized problems (P1- P6). In addition, for large-scale problems (P7-P15), at 

the best case, the proposed algorithm could generate near-optimum solutions in approximately 

two hours, with minimum, maximum, and average gaps of 11.18%, 14.93%, and 13.81%, 

respectively, from the lower bound reported by CPLEX. As CPLEX cannot solve these problems 

optimally in a reasonable time, we rely on the best bound obtained (which is not a feasible 
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solution) after two hours. This means that the real optimal gap is definitely smaller that the 

reported values. Based on the CPU time, the HPSO algorithm, on average, has a better 

performance for larger-sized problems. The differences between the lower bound (non-optimal 

solution) of the CPLEX software and the best solutions of the proposed HPSO are sufficiently 

small. When the results are reviewed, a mere 5% difference from the global optimum in medium-

sized problems and an 11% difference from the lower bound in large-size problems is sufficient 

persuasion of the competency of the proposed algorithm’s performance. These results prove the 

high potential of the proposed HPSO in achieving better solutions in acceptable times. 

Furthermore, in all small-sized instances and without any exceptions, the proposed HPSO 

algorithm attains the global optimum in a few minutes. 
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Table 10. Performance of the developed metaheuristic 

Problem Orders Operations Machines Vehicles 

CPLEX   HPSO 

# 
variables 

 �8��*  CPU time**  �H��* 
CPU 

time** 
  �8����* �H����* CPU time  ���8 ���H 

P1 2 2 2 6 478 12300 00:00:00:26 11.9 00:00:00:36  12425 12.2 00:00:26:62 1.02 2.52 

P2 2 3 3 6 914 19450 00:00:00:44 14 00:00:00:47  20605 14.35 00:00:47:11 5.94 2.5 

P3 3 3 2 6 1126 25460 00:00:01:11 21 00:00:09:04  25913 21.29 00:00:52:72 1.78 1.38 

P4 3 3 3 10 1720 24545 00:00:01:65 16.7 00:01:21:76  24569 17.2 00:00:68:26 0.10 2.99 

P5 4 3 3 10 2506 37310 00:00:06:58 21 00:32:20:33  37535 22.2 00:02:41:06 0.60 5.71 

P6 5 3 3 10 3440 49483 00:04:04:09 61.3 02:00:00:00  50929 63.98 00:10:85:57 2.92 4.37 

P7 7 3 4 12 7380 104247 01:36:26:40 14.4 02:00:00:00  119000 16.45 02:00:00:00 14.15 14.23 

P8 8 3 4 12 9158 77684 02:00:00:00 108.7 02:00:00:00  89960 123.98 02:00:00:00 12.81 14.05 

P9 9 3 5 12 13054 102843 02:00:00:00 193.6 02:00:00:00  115199 215.26 02:00:00:00 12.01 11.18 

P10 10 3 3 15 11940 169270 02:00:00:00 131.54 02:00:00:00  191700 151.18 02:00:00:00 13.25 14.93 

P11 12 3 2 15 13075 - 00:53:15:39*** 223 02:00:00:00  200240 255.37 02:00:00:00 - 14.51 

P12 12 3 3 15 19486 210200 02:00:00:00 360.79 02:00:00:00  234011 410.95 04:00:00:00 11.328 13.90 

P13 15 3 4 18 30742 N/A 03:00:00:00 N/A 03:00:00:00  1567100 2062900 04:00:00:00 - - 

P14 20 3 5 22 63986 N/A 03:00:00:00 N/A 03:00:00:00  3375200 4288400 05:00:00:00 - - 

P15 25 4 7 25 193999  N/A  03:00:00:00 N/A  03:00:00:00   9792400 9755100 05:00:00:00 - - 

* Solving the first objective function ( �8) is equal to solving model t8 and also solving the second objective function ( �H) is equal to solving model tH. 

** For medium and large-scale problems, the lower bounds (LB) of CPLEX reported after two hours are used for comparison.  

*** In this test problem, CPLEX is stopped as “out of memory”, and until the reported time, could not generate the model to solve it. 

 N/A: CPLEX cannot reach a feasible solution after three hours.
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6. Value of integration 

In this section, we investigate the importance of the joint scheduling of production and distribution, 

through comparing the integrated model proposed in this study and the hierarchal schedules of 

these two operations. In this context, four test problems for different numbers of jobs (n= 3, 4, 5) 

are provided for solving with both integrated and separate approaches, and the results are reported 

in Table 11. 

In the separate approach, the production model is solved first without considering distribution 

constraints, with the objective of minimizing the production cost, �88 = ∑ ������+����,�,� , to 

obtain the production cost and completion time of orders. As the departure time of the vehicles is 

equal to the completion time of the last job in each shipment, the obtained completion times from 

the production model are set as the parameters in the distribution model. Then, the distribution 

model with the objective function of minimizing the weighted sum of delivery earliness and 

tardiness, �H = � × ∑ � KL.� − %� , 0N?�<8 + μ × ∑ � KL � − .� , 0N?�<8 , is solved, to obtain the 

total time of earliness and tardiness to measure customer satisfaction. To derive the distribution 

cost in the separate approach, we solve the distribution model with the objective function of 

distribution cost, �8H = ∑ E��4�+��(1� − 0�)FG�<8 . 

To compare the results of the separate approach with the integrated method, we solve the proposed 

IPDS model twice in a single objective framework. First, we minimize the total cost of production 

and distribution scheduling �8 = ∑ ∑ ∑ ������+���;�<8=>�<8?�<8 + ∑ E��4� + ��(1� − 0�)FG�<8  to 

determine the values of the production and distribution costs and completion time of orders. 

Second, we minimize the weighted sum of delivery earliness and tardiness to evaluate the 

improvement on customer satisfaction.
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Table 11. Value of the integration   

  Separate approach  Integrated approach 

Problem N 
Distribution 

cost 
Production 

cost    
f2 

Total  
cost 

Completion time  
Distribution 

cost 
Production  

cost 
f2 

Total 
cost 

Completion time 
f2 

improvement(%) 

1 3 510 41000 73.5 41510 (0,45,106,84,0)  510 41000 44.1 41510 (0,100,61,39,0) 40 

2 5 658 63800 60.7 64458 (0,45,67,100,133,154,0)  658 63800 35.8 64458 (0,148,22,70,103,37,0) 41 

3 3 510 63500 72.1 64010 (0,51,103,148,0)   510 63500 57 64010 (0,148,97,45,0) 20 

4 4 525 100250  174.9 100775 (0,51,237,115,173,0)  525 100250 48.3 100775 (0,51,173,221,109,0) 72 
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As illustrated in Table 11, for all test problems, when production and distribution schedules are 

integrated, the weighted sum of delivery earliness and tardiness decreases, whereas the production 

and distribution scheduling costs are fixed. Such an improvement in the customer satisfaction with 

a minimum total scheduling cost implies that the integration policy brings a significant added value 

to the consumers, while keeping the solution as economic as possible. The rationale behind this 

observation is that the integration option permits reduction of the completion time of orders as 

much as possible. Hence, the integration of the two decisions brings a higher customer satisfaction 

level for products with urgent fulfillment constraints, which constitutes an important decision-

making exercise for MTO businesses, as compared with the separate production-distribution 

optimization (Table 11).  

The company studied herein had already established a traditional production scheduling system to 

manage shop floor issues. Their system firstly generated a production schedule, and then the 

department of transportation hierarchically derived the transportation schedule based on the given 

production completion times. After applying the new method successfully based on the integrated 

optimization approach, and despite the natural primary resistance of the company to applying new 

procedures, it could demonstrate the usefulness of such integration methodology. In that regard, 

in the medium term, their margin was raised by approximately 15 percent on average, and they 

observed up to a 20 percent improvement in time window violations. That means that the 

integration policy acts as a key for producing received orders as soon as possible and delivering 

finished products in the batch immediately after production to avoid violations to the committed 

delivery times. This was impossible without permitting the production system to flexibly choose 

the different process routes, and to consequently reduce the completion times through omitting the 

bottlenecks. More importantly, the integrated model is capable of improving customer satisfaction 
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by designing an efficient optimization scheme, where production scheduling is performed based 

on delivery scheduling and imposed delivery time windows, pickups are fixed according to 

completion times, and routes are arranged along with given deadlines, all under the minimal total 

scheduling cost. If the integration option is not enabled, i.e., according to the company's prior 

experience with the old method, the customized products are usually not delivered within their 

committed time windows, resulting in a meaningful shift in early or late delivery. Figure 6 depicts 

the comparison of the weighted sum of delivery earliness and tardiness obtained in the separate 

approach, versus that obtained in the proposed integrated model. 

 
 

  

Figure 6. Comparison of the weighted sum of delivery earliness and tardiness under the integrated and 

separate approaches  

As illustrated in Figure 6, as compared with the separate approach, the integrated production-

distribution optimization leads to a significant decrease of the total time of earliness and tardiness. 

As a summary, and according to the Table 11 and Figure 6, joint scheduling is advantageous from 

both customer satisfaction and economic points of view. Practically, our framework provides a 

34

54

74

94

114

134

154

174

1 2 3 4

w
ei

gh
te

d 
su

m
 o

f 
de

liv
er

y 
ea

rl
in

es
s 

an
d 

ta
rd

in
es

s

Test problem number

separate approach Integrated approach



37 
 

suitable tool for enabling a company to adopt an integration strategy as a lever not only to achieve 

the highest level of customer satisfaction, but also to operate as a coordinator between economic 

and customer criteria. 

7. Conclusion and suggestions for future research 

This study presents a bi-objective mixed integer model for managing an integrated FJS scheduling-

vehicle routing problem with time window (VRPTW) constraints in an MTO business. The model 

finds a joint optimization scheme between production and distribution scheduling decisions, such 

that the trade-off between total operational cost and the weighted sum of delivery earliness and 

tardiness is optimized.  

Inspired from real case study and based on data extracted from an FJS-based manufacturer, the 

proposed model is first optimally solved with the � −constraint method. Then, to address medium- 

and large- sized problems in a reasonable time, an efficient HPSO algorithm is developed, and it 

is validated by solving an extensive set of test problems. The results showed that our framework 

can permit the company to create a balance between conflicting criteria: cost and customer time 

window satisfaction. We particularly discussed a situation where the integration policy can act as 

a lever, not only to improve customer satisfaction through reducing the total completion times by 

allowing flexible process routes (resulting in faster pickups), but also to help the company keep 

the total production and distribution scheduling costs at the minimum possible levels. 

To the best of our knowledge, the current study is among the first investigations studying a flexible 

machine scheduling problem by considering transportation decisions. In addition to filling the 

research gaps, our study concerns a practical routing delivery problem with a soft time-window. 

The applicability of the developed framework is also enabled by allowing the use of different 
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orders ‘sizes and a heterogeneous fleet composed of vehicles with different capacities, and fixed 

and variable costs. 

Modeling the problem as a multi-objective optimization ensures an added value from theoretical 

and practical point of views. The developed model combines and trade-off two conflicting 

performance measures in a bi-objective modeling framework: cost minimization, and customer 

satisfaction maximization. Such a conflicting impact of decisions is naturally a challenging 

concern for decision makers in a highly competitive environment. From a theoretical point of view, 

we model our problem as a generic bi-objective model. Thus, our model could be adapted to solve 

other production and/or distribution systems with simpler machine (such as flow-shop) and/or 

delivery configurations (such as split delivery). From a managerial point of view, we demonstrated 

to practitioners the feasibility of the integration between production and distribution and more 

importantly we showed that it leads to positive impact on both the economic and customer service 

performance indicators. 

For future research, we suggest studying the integration of production scheduling with an 

inventory routing problem (IRP) for vendor-managed inventory systems, where the customers are 

retailers rather than end users, and their inventory levels are managed by the supplier 

(manufacturer). Indeed, moving from a business-to-consumer (B2C) to a vendor-managed 

inventory (VMI)-based business-to-business (B2B) supply chain structure adds additional cost 

components (such as overstock and understock penalties), and stock control would be part of the 

trade-offs addressed in the present study. It would also be interesting to study the joint production-

distribution scheduling problem under an uncertain environment caused, for instance, by random 

yields and random machine failures. 

 



39 
 

References 

Armstrong, R., Gao, S., Lei, L., 2008. A zero-inventory production and distribution with a fixed 

customer sequence. Annals of operations research, 159 (1), 395-414. 

Cakici, E., Mason, S. J., Kurz, M. E., 2012. Multi-objective analysis of an integrated supply chain 

scheduling problem. International Journal of Production Research, 50(10), 2671-2685. 

Chang, Y.–C., Li, V.C., Chiang, C.–J., 2013. An ant colony optimization heuristic for an integrated 

production and distribution scheduling problem. Engineering Optimization, 4(46), 503-520. 

Chen., Z. L., 2010. Integrated Production and Outbound Distribution Scheduling: Review and 

Extensions. Operations Research, 58(1), 130-148. 

Chen, Z.-L., Pundoor. G., 2009. Integrated order scheduling and packing. Production and 

Operations Management, 18(6), 672-692.  

Chen, Z.-L., Vairaktarakis, G. L., 2005. Integrated scheduling of production and distribution of 

distribution operations. Management Science, 51(4), 614-628. 

Dantzing, G.B., Ramsar, J.H., 1959. The Truck Dispatching problem. Management Science, 6, 80-
91. 
 
 Deb, K., 2001. Multi-objective optimization using evolutionary algorithms. Chichester, UK: 

Wiley.  

Devapriya, P., Ferrell, W., Geismar, H.N., 2016. Integrated production and distribution scheduling 

with a perishable product. Eur. J. Oper, 259(3), 906-916. 

Garey, M.R., Johnson, D.S., Sethi, R., 1976. The complexity of flow-shop and job-shop 

scheduling. Mathematics of operations research, 1(2), 117-129.  

Garcia, J.M., Lozano, S., 2005. Production and delivery scheduling problem with time windows. 

Computers and Industrial Engineering, 48(4), 733-742.  



40 
 

Geismar, H.N., Laporte, G., Lei, L., Sriskandarajah, C., 2008. The integrated production and 

transportation scheduling problem for a product with a short life span and non-instantaneous 

transportation time. INFORMS J. on Computing, 20, 21-33.  

Guo, Z., Shi, L., Chen, L., Liang, Y., 2015. A harmony search-based memetic optimization model 

for integrated production and transportation scheduling in MTO manufacturing. Omega, 66, 327-

343. 

Hall, N.G., Potts, C.N., 2003. Supply chain scheduling: Batching and delivery. Operations 

Research, 51(4), 566-584. 

Hassanzadeh, A., Rasti-Barzoki, M., Khosroshahi, H., 2016. Two new meta-heuristics for a bi-

objective supply chain scheduling problem in flow-shop environment. Applied soft computing, 

49, 335-351. 

 Joo, C.M., Kim, B.S., 2016. Rule-based meta-heuristics for integrated scheduling of unrelated 

parallel machines, batches, and heterogeneous delivery trucks. Applied soft computing, 53, 457-

476. 

Kacem, I., Hammadi, S., Borne, P., 2002. Approach by localization and multi-objective 

evolutionary optimization for flexible job-shop scheduling problems. IEEE Transactions on 

System, Man, Ceybern. 32(1), 1-13. 

 Karaoglan, I., Erhan kesen, S., 2016. The coordinated production and transportation scheduling 

problem with a time-sensitive product: a branch-and-cut algorithm. International Journal of 

Production Research, 55(2), 536-557. 

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: IEEE International Conference 

on Neural Networks, 4, 1942-1948. 



41 
 

Li, C.-L., Vairaktarakis, G., 2007. Coordinating production and distribution of jobs with bundling 

operations. IIE Transactions, 39(2), 203-215.  

Li, K., Zhou, C., Leung, J. Y.-T., Ma, Y., 2016. Integrated production and delivery with single 

machine and multiple vehicles. Expert Systems with Applications, 57, 12-20. 

 Liu, P., Lu, X., 2016. Integrated production and job delivery scheduling with an availability 

constraint. International Journal of Production Economics, 176, 1-6. 

Low, C., Chang, C-.M., Li, R-.K., Huang, C-.L., 2014. Coordination of production scheduling and 

delivery problems with heterogeneous fleet. International Journal of Production Economics, 153, 

139-148. 

Moons, S., Ramaekers, K., Caris, A., Arda, Y., 2017. Integrating production scheduling and 

vehicle routing decisions at the operational decision level: a review and discussion. Computers 

and Industrial engineering, 104, 224-245. 

Mirzapour Al-e-hashem, S.M.J., Rekik, Y., 2014. Multi-product multi-period Inventory Routing 

Problem with a transshipment option: a green approach. Int. J. Prod. Econ. 157, 80–88. 

Mirzapour Al-e-hashem, S.M.J., Rekik, Y., Hoseinhajlou, E.M., 2019. A hybrid L-shaped method 

to solve a bi-objective stochastic transshipment-enabled inventory routing problem, Int. J. Prod. 

Econ.  209, 381-398. 

Pundoor, G., Chen, Z.-L., 2005. Scheduling a production-distribution system to optimize the 

tradeoff between delivery tardiness and total distribution cost. Naval Research Logistics, 52(6), 

571-589. 

Saglam, U., Banerjee, A., 2017. Integrated multi-product batch production and truck shipment 

scheduling under different shipping policies. Omega, 74, 70-81. 



42 
 

Soukhal. A, Oulamara, A, Martineau, P., 2005. Complexity of flow-shop scheduling problems 

with transportation constraints. European Journal of Operational Research, 161(1), 32-41. 

Stecke, K.E., Zhao, X., 2007. Production and transportation integration for a make-to-order 

manufacturing company with a commit-to-delivery business mode. Manufacturing and Service 

Operations Management, 9(2), 206-224. 

Ullrich, C.A., 2013. Integrated machine scheduling and vehicle routing with time-windows. 

European Journal of Operational Research, 227(1), 152-165. 

Viergutz, C., Knust, S., 2012. Integrated production and distribution scheduling with lifespan 

constraints. Annals of Operations Research, 213(1), 293-318. 

  

 




